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Abstract: A robust V-cycle multigrid method is constructed for the linear systems arising from the bilin-

ear finite element discretization of anisotropic linear elasticity equations. By using the Xu-Zikatanov

(XZ) identity, quasi-optimal convergence of the method is established in the sense that the multigrid

method is independent of the parameter ¢ and weakly dependent on A. Since the “regularity assumption”

is not used in the analysis, the results can be extended to domains consisting of rectangles. Numerical

experiments confirm the theoretical results.
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1 Introduction

As one of the most efficient methods for ap-
proximations to solutions of partial differential e-
quations, multigrid methods have been used ex-

tensively (see Refs. [ 1-14 ] and the references
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element; Multigrid method

therein). This paper will construct multigrid
methods for anisotropic linear elasticity equations
and present convergence analysis of the construc-
ted multigrid method without the “regularity as-
sumption”. There are so many papers focus on

the construction and analysis of multigrid meth-
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ods for isotropic linear elasticity equations (for
example Refs. [15-16]), but no such results for
anisotropic linear elasticity equations.

The existing multigrid theories for anisotrop-
ic problems are focused on the second order aniso-
tropic elliptic equation. The theories can be clas-
sified into three categories. One follows the
standard multigrid framework proposed by Hack-
busch and later extended by Bramble and Pas-
ciak!™, imposes the “regularity and approxima-

#1920 One follows the frame-

tion” assumption-
work of multigrid proposed by Bramble, Pasciak,
Wang and Xu" * (see also Xul®' and Yseren-
tant®), see Refs. [** 1" The last one follows
the multigrid framework developed by Xu and

231 which do not need any “regularity”

(22.27]  In all of

these works, only scalar equations were consid-

Zikatanov

of partial differential equations

ered and do not consider any coupling of varia-
bles.

This paper will construct multigrid methods
for anisotropic linear elasticity equations and ana-
lyze the convergence of the methods following the
framework developed by Xu and Zikatanov'?.
Because of using the framework!, we do not
need any “regularity” assumptions in the analy-
sis. The main difficulties of the analysis are how
to choose a proper space decomposition (or proper
smoothers) and how to construct stable quasi-in-
terpolation operators. To overcome these difficul-
ties we use line smoothers in z-direction to the
first variable of the displacement field and line
smoothers in the y-direction for the second varia-
ble of displacement field, and we use the quasi-in-
terpolation operators constructed in Ref. [ 22 ].
The main difference of the analysis of multigrid
methods for anisotropic linear elasticity equations
between second order elliptic equation is that we
need to consider the coupling of variable, and this
cause some difficulties in the proof of stability de-
composition of spaces and the stable of quasi-in-
terpolation operators. For simplicity of exposi-
tion, we present our analysis in the unit square

domain. The analysis, however, can be easily

generalized to domains for which the full regulari-
ty does not hold following the existing work!?/,
In this paper, we use notation a <b (or a =b)

to represent that there exists a constant C inde-

pendent of mesh size A and the Lame constant A
such that a<<Ch (or a=Cb), and use a =b to de-
note a <b=a.

The rest of this paper is organized as fol-
lows. In section 2, we describe the model prob-
lem, and review the successive subspace correction
algorithm. Section 3 constructs the multigrid
methods and obtains the error operator. Section 4
gives the property of the space decomposition of
M, X M,. Section 5 presents the convergence of
multigrid methods. In the final section, we give

some numerical results.

2 Preliminaries

In this section, we present a model problem
and review the successive subspace correction al-
gorithm,

2.1 Model problem

Let Q=1(0,1)?CR? be the unit square. We
consider the 2 dimensional anisotropic linear elas-
ticity problem

—divelw) =f
u=0 on Jd()
where u = (u, v)T € R*is the displacement field,

in Q.
n 1)

and «(u) :%(Vu + (Vu)T) the strain tensor,

fER? the body loading density, and C the sym-

metric  positive  definite elasticity —module
tensor with
adu+bdo e(du+d,v)
e~ ’ e
e(du+dv) bdutadwv
where a,b,e are positive constants, a,b are given
bya=+—, b= Ey 5 for plane stress problems,
1—y 1=y
and
a— Eld—y
I+ =20~
b Ev

A+ d—20)
for plane strain problems, with 0 <<y <C0. 5 the
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Poisson ratio and E the Young’s modulus. We are
interested in the case that a >¢ and do not consid-
er the case v>0. 5, so we always have a >0 and a
—b~b~a>¢e. Such kinds of problems main arise
from the anisotropic orthotropy materials.

The weak form of equation(1) is;: find

u€ (H{(Q))? such that

aCu,v) =(f,v), forallve (H (Q))* (3

where

aWdOZJQGW%KWdﬂ%

(fsv) :J [ evdxdy
Q
defined two inner products on (H{ (Q))?. We de-

fine | » |A=a(+,*) to be the energy norm
on (Hj(Q))°.

Assume that T, CT, C++ CT; is a sequence
of nested square partitions of Q. The finest mesh
T, is obtained by divided Q into 27" X2/7! small
squares of equal size, and T; for 0 <<k<<J —1 is
obtained by uniformly coarsening of T,.,. Let A,
(0<<k<J) denotes the mesh size on the kth level
mesh. For 1 <<k <]J, let N, be the integer such
that T, partitions  into (N,+1) X (N,+1)
small squares. Define

Qi ={(x,y»)eQ:G—Dh,<y<(G+Dh},

2<j<N,
and

O, = {(2s3) €Q:G—Dhy<x<G +Dhy ) »

2<j<N,.
Namely,Qf,; is a horizontal strip of width 2A; in
the a-direction and )7,; is a vertical strip of width
2h; in the y-direction.

Let M, be the bilinear finite element space-*"
of H}(Q) associate to T,. We obtain a sequence
of nested spaces

M, M, C---CM;.

We shall develop multigrid algorithms™* %! for
solving the problem on the finest grid: given f €&
M; XM, find u € M; XM, satisfying

alu,v)=(f,v) forall veM; XM, 4)
2.2 Successive subspace correction

In this subsection, we will review successive

subspace correction (SSC) algorithm!® %!, Let V

be a Hilbert space. Assume that V,CV (i =1,2,

J
=+, J) is a subspace of V, and satisfy V = 2 V..

i=1
Let A:V =V be a symmetric and positive definite

operator, and the norm induced by A is
denoted as

Ie Ta=CA«,e)=al+, ).
Define

A; + V.V, be the restriction of A toV;, 1. e.
A; satisfying (Av;»w;) =a(v; sw;) for all v;,w; €
Vi H

Q; * V5V, be the L? projection, 1. e. Q: satis-
fying (Qu,w,) = (w,v,) for all w€V and w; €V;;

P;:V =V, be the projection operator in the
inner product induce by A, i. e. P; satisfying a(P;
vsw;) =a(v,w;) for all weV and w; €V..

The one iterate step of SSC algorithm for
solving equation: find « €V, such that

aCu,v) =(f,v) forallveV
can be reads as:

(Algorithm SSC) Give «* €V to obtain 1! €V.

(D Let v=u*;

(2) Fori=1: ], define v=v+A;'Q; (f—
Av);

(3) Let ™' =u.
The error operator of SSC can be written as

E,=(—P)—Py)-(I—P)).
The following fundamental identity developed by

[23]

Ref. [ 23] for the multiplication of operators (see
also Ref. [12] for alternative proofs).

Theorem 2. 1 (XZ identity) Assume that V
is a Hilbert space with the a( *, * )-inner prod-

uctand V, CV (i =1,2,++,]J) are closed sub-

J

spaces satisfying V' = E V.. Let P, : V=V, be

i=1
the orthogonal projection in the a( *, * )-inner
product. Then the following identity holds:

| (I=P)(I—P; )e(I—P)) | 4=

loll ,=1

1— 1
1 _._C() ’
where
I J ,
o = sup Jmf 2 H P,va Ui [ 5-
ZT‘ :r’1:1 j=itl

i=1
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3 Multigrid algorithms

3.1 Algorithm
To describe the multigrid algorithm we intro-
duce the following auxiliary operators. For 0 <<
k<] define the operator A, : M, XM,—>M, XM, by
(Ayw,@)=a(w,@)for all w,p € M, XM,.
The operator A, is symmetric and positive definite
with respect to the L? inner product. We define
2 My XMj-M, XM, in

¢ )-inner product as

the projection operator P,
the aC« ,
a(Pw,@)=alw,) for all o €M, XM,,
and the L? projection Q,  L*(Q) XL*(Q)—M, X
M, as
(Quw, ) =(w,@) for all €M, XM,
For 1<k <<J, we define
M, ={veM, : v=0in Q\Qi,},
i=1.2..N,.
M, ={vEM, : v=0in Q\Q);} ’
j=1.2,.N,.

Then M, can be decomposed as

ZM}\’]

Similarly, for k=0,
—M,.

Let Pi; + H (Q) X0 M, X0, Py, : 0X
Hi (=0 XMy,; be the projections with respect
to the inner product a( * , * ), and Q;,; * L*(Q)
X0 M, X0, Q) ¢ 0 XL* ()0 XMy, be the
projections with respect to the L? inner product
(e, ). Let A7 : Mi, X0 —M;i,; X0 and A}, :0
XMy, =0 XMy ; be the operators satisfying
= (A} w,v) for all w,v€Mj; X0,
= (A}, ;w,v) for all w,v€0XMy,;.
It is easy to verify the following relations;

APy, :Q/sA/a ’ AZ.;'P‘/?,,‘ :Q}’Q._,‘Ak ’

A%/Piﬁj :Qiy.jAk (5)
We decompose M; XM as

let No =1 and Ml)l :M(\)),l

a(w,v)

a(w,v)

1 J
M; XM, = > M, XM, +M, XM, + >} M, XM, =

k=] k=1
N,

k=]

Applying successive subspace correction (SSC) to
the above space decomposition and choose exact
subspace solvers P, on My, XM,, Pf; on M ; X0
and Py; on 0 XMy, ;, we obtain the V-cycle multi-
grid method with only one pre-smoothing and
post-smoothing step in each V-cycle iteration and
the smoother is x-line smoother for the first vari-
able of u and y-line smoother for the second varia-
ble of u.
3.2 Error operator

Use the body capital letter E, to denote the
error operator, then by the theory of SSC E, can

be written as

J i N .
E, = (I:[ (1T, a—pp Il a—ri))
(IT (I, =P I, a
k=0

*

— o

—Pi))).

where ( » )* is the adjoint in the inner product a

1 N J Ne N
DU M, X 0)+ D)0 X M) ) +M, XM, + >0 (D) (Mi; X0+ D)0 X Mi)).
j=2 j=2 k=1 j=2 j=2

(' D ')7 Pg.l :P81 :PO-
'9Nk and Pk.]+Nk

Let P/Q,]'
:P;e/.,jJrl 9j:17"‘,

] | —
IE 1 = [ TT(TT a
k=0

In the following sections, we will estimate the A-

:P/:]v] :Za
Nk_l. Then

~Pe))| @

norm of E,. Our analysis relies on Theorem 2. 1.
We shall show that the constant ¢, in Theorem
2.1

with respect to e and depends on A in a very weak-

ly way.
4 The decomposition of space M,

In this section we give the property of the
By the stable de-
composition of the L*-norm, we immediately have

For any v, € M, XM,, let v

space decomposition of M, XM,.

Lemma 4. 1
N, N,

= E Wi 2 Wiis Wi €M X0, y; €0 X
i=2 i=2
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M}?,i’ izZaBa'"aNk. Then we have

Nk Nk

2 2
S we 1A+ 1w I3 =
i=2 i=2

1S3 P
Ivilla +5 1 v 112 D
hi
Proof Note that, we can write w,,; and y,,,

as wy,; = (wy; 07 and yy,, =OVei)T,

w3 = JQ (a (Dao0)? e (Dgve)? ) dadys

Iy 3= JQ (a (QW¥ri)?+e (O Vri)?)dxdy.

Ne
Assume that v, =(u, v,)?. Then u,= 2 wy.; and
i—2

N,

= 2 Wi, u is only decomposition in the y-di-

i—2
rection and v is only decomposition in the a-direc-
tion. Therefore, by the stability of the decompo-

sition in the L?-norm, we have

N, N,
E H o Wi |2 = H 2 Jr We,i
i=2 i=2

N, N,
Dyl ve? = | >0 0, wes| " = la, 0l
i=2 =2

On the other direction, we use the inverse ine-

S EA B

quality to get

Nk Nk
2 H (,)y wk’,‘”Z Sh;ZZ ||u’/€.i||2 Sh;z |
i=2 =2

2
u,,H ’

N,

N,
Do veill? = b D) Weillz < by |vl
i=2 i=2

2

A linear combination of the above inequalities

leads to

N, N,
S e la + D) Weila =<
i=2 i=2

a<||aluk|2+||9yw|\2>+h%le|2 (8
k
Note that

H Vi H /Zx :a(| g ” 2+ H 8_)'vk ” 2) +

e l2,u, +3,0, )7
JerJ d,uydyvpdrdy=
Q

(a=b) 2w |* 19,0017 +
€ H ayuk 49, v, ” %
By inequality (8) and the assumptions on the con-

stants a,b, the desired result follows.

QL. F. BOFREBNE AN S VIR S F Rk 823
5 Convergence analysis without
“regularity”

In this section, we will analyze the conver-
gence of V-cycle multigrid method constructed in
this paper without using any “regularity” assump-
tion of the anisotropic linear elasticity equation.
We will introduce a stable quasi interpolation op-

18- 221 and then give the convergence results

[23]

erator
by using XZ identity
5.1 Stable quasi-interpolation operators

In this subsection, we will introduce stable

(18, 22] Here we

quasi-interpolation operators
briefly review the definition and the properties of
the operators. Let ¢f € Py (af,2ty) (or € P,
(%,3%1)) be the one dimensional linear nodal

On the edge

k k
ioor i,

base at the point x
(z2%,2%1), we choose

0 =hi ' (4 §0{ —2 gDIﬁW 1) €Py (&t xki).
Direct computation shows

k k

Jf 0l =1, Jf 0f pta = 0,
where Py (2%,2% 1) is the space of polynomial of
degree less than or equal to 1 on the edge
(2%,2%,). Similar definition applies to ¢ (y) for
the edge (¥%,3% ).

For a function v € H' (), we define I} and

I} as follows.

Nk
(o) (xa3) = 25 0 (eh (@) -
1;}\}2
(o) (x.y) = E v (2)@s () s
where
(= [ 0 vy de,

o, (0= [ 05 (o ey,

Vi

We then introduce a quasi-interpolation I, :* H} (Q)

N, N,
Ik"l) = 2 Z Vi,j SO?(I) gpﬁ‘(y) ’
i—2 j—2

where

k k
Lirl | Y
Ui :Jk J; 0% ()0 (y)v(xsy) dxdy.
x Y
In this definition, since the boundary nodes are

i
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not included, we can easily to see that I,v |,q =0.
Lemma 5. 1% %%

hold for the interpolation I, I; ,and I3 :

The following properties

(1) Preservation of bilinear finite element
=, for v, EM,;

(2) Approximation property:

| v—TIw | <hg|v|, for ve H' (Q);

(3) Operators I{ and I are interchangeable
and I, =L1y =113 ;

(4) If and I are stable in both L*-norm and

corresponding one dimensional H'-norm. Name-

functions: I, v,

ly, for all v€ H', we have

=[ol.l ol =l

and

Jo ol =[a,0] 5

(5) For ve€M;, we have

lo. ol =lo0ll, [9,liv] =<]9,v].

For any u= (u,v)T € M; XM, , define Myu =
(La s Iv)T. Using the properties in Lemma 5. 1,
we prove II, is stable in the energy norm.

Lemma 5.2 For any u=(u,v)” € M; XM, ,
it holds

[Thu a=lu | 4.

Proof For any u€M; XM;, it holds that

I T |5 =aC 10, T |17+

H aylk‘U H 2) +e H aylku +d, Iyv H -+

2/7 J (’)J-Iku (’]yIk‘Udl'dyS
Q

(atb)Cldu 17+ a0 [7)+
eldu I2+elldo 2= llulli.
Then the desired result follows.
5.2 Convergence
In this subsection, we will use XZ identity to
prove the convergence of V-Cycle multigrid meth-
od for anisotropic 2D linear elasticity equations.
Theorem 5. 3
stant C independent of € and &, such that

There exists a positive con-

IE, a<<1—

i. e, the V-cycle multigird method is convergent

with rate 1 — 1

Proof For any vEM; XM;, we define
vk:(Hk _Hk—l)VEMk XMkak:O,l,"',_],

J
where [1_, =0. It is easy to check that y= Z Vi.

Assume that v, = (ux s )T. We can decompose u,

N Ny
and v, as u, = 2 Up,is Up= 2 . » where for i =
i=2

250y Ny up. I-EM;\, . and v, €MY.;. Define
(uMyO) =2,3,*y,N,

and
U, j+N, :(Oaw.ﬁrl )Taj =1,2,++,N,—1,
7N
thus v= 2 2 u,,;. By Theorem 2. 1, we have
k=0 j—2
2N,
o = sup inf 2 2
vl y=1 5 2N —0 =2
> u,
k=0 i=2 o1

2
A

HP}e.i E u;

()= (k)

where the ordering (/,j) >(k,7) is defined by
{l/e but j >,

(L)) =>Cky) if

By the decomposition of v, it is easy to check that
J 7'\1)(*1 7\, —1
aPIDILEED IR

<1j>\~~</,> [=kF1 j j=it1
2N,—1 2N,—1

Z v, + Z w,; =v—ILyv+ Z U;.
l=kt+1 =itl j=itl
Immediately, we get
2N, —1

2 | Py 2 u,; HZAS

i=2 Uy > (ki
2N, 1

2 2
[v—ILvIa + 2 (I 7P

=2
By Lemma 5. 2, we have [[v—ILv o= v || 4.
For 1<<k<{J, using Lemmas 4. 1 and 5. 2, it

holds that

2N, 1

2 2
Dl Ia= v lla+5
i=2 h}e

v 12 =

Ivl i+ 2( [v—ILv [I* + [[v—IL,v [*)=

< lvla.
For £ =0, it holds that

2 2 2 2
[voi fa= 1l [a=[TvlIla=lvla.

Thus we have

N ~
Co <

The desired result follows.

6 Numerical experiments

In this section, we use two examples to veri-
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fy theoretical results in the above sections. We
choose parameters in equation (1) asa=1.5,b=1
and let e>0. The domain for one example is Q=
(0,1)? and another one is Q =(0,1)2\(0.5,1)%.
The body force for both examples is f=1. When
| f=Aull
Il

tion steps is larger than 2000, we stop the itera-

the related error <107* or the itera-

tion.

We compute the multigrid method with line
smoother in this paper (LMG) and the classical
multigrid with one point pre-smoothing and post-
smoothing in each iteration step (CMG), and lis-
ted the results of different ¢ and 4 in Tables 1 and
2. Through the numerical results, we can see
that the multigrid method analyzed in this paper is
robust with respect to both € and &, while the
classical (CMG) one is dependent on both ¢
and h.

Tab. 1 The results of LMG and CMG for different ¢ and h
on square domain
€
Method At
1 0.1 0.01 0.001 0.0001
8 20 13 16 17 18
16 24 14 15 16 17
LMG 32 30 14 15 16 17
64 32 14 14 15 16
128 32 14 14 14 15
8 19 36 110 157 166
CMG 16 24 46 234 490 576
32 29 48 322 1249 1895

Tab. 2 The results of LMG and CMG for different ¢

and h on L-shape domain

€

Method Al
1 0.1 0.01 0.001 0.0001

8 19 13 16 17 17

16 28 14 16 17 17

LMG 32 35 14 15 16 17
64 39 15 15 15 16

128 40 15 14 15 15

8 19 39 106 154 162

CMG 16 29 48 235 485 598
32 35 51 335 1287 1971

S

[1] Bank R E, Douglas C C. Sharp estimates for multi-
grid rates of convergence with general smoothing

and acceleration [J]. SIAM J Numer Anal, 1985,

[2]

[4]

[6]

7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

22. 617.

Bank R E, Dupont T. An optimal order process for
solving finite element equations [ J]. Math Comput,
1981, 36 35.

Braess D, Hackbusch W. A new convergence proof
for the multigrid method including the V-cycle [J].
SIAM J Numer Anal, 1983, 20. 967.

Bramble ] H, Zhang X. Uniform convergence of the
multigrid V-cycle for an anisotropic problem [ ] ].
Math Comput, 1998, 70 453.

Bramble ] H, Pasciak ] E, Wang J, et al. Conver-
gence estimates for multigrid algorithms without
regularity assumptions [ J]. Math Comput, 1991,
57 23.

Bramble ] H, Pasciak ] E, Wang J, et al. Conver-
gence estimates for product iterative methods with
applications to domain decomposition [ J]. Math
Comput, 1991, 195; 1.

Bramble ] H, Pasciak J E. New convergence esti-
mates for multigrid algorithms [J]. Math Comput,
1987, 49. 311.

Bramble ] H, Pasciak ] E. New estimates for multi-
level algorithms including the V-cycle [J]. Math
Comput, 1993, 60. 447.

Bramble ] H, Pasciak ] E, Xu J. The analysis of
multigrid algorithms with nonnested spaces or non-
inherited quadratic forms [J]. Math Comput, 1991,
56 1.

Bramble ] H, Xu J. Some estimates for a weighted
L? projection [J]. Math Comput, 1991, 56 463.
Brandt A. Multi-level adaptive solutions to bounda-
ry-value problems [ J]. Math Comput, 1977,
31 333.

Cho D, Xu J, Zikatanov L. New estimates for the
rate of convergence of the method of subspace cor-
rections [ J]. Numer Math-Theory Me, 2008,
1. 44.

Griebel M, Oswald P. Tensor-product-type sub-
space splittings and multilevel methods for aniso-
tropic problems [ J]. Adv Comput Math, 1995,
4. 171.

Hackbusch W. Multi-grid methods and applications
[M]. Berlin; Spring, 1985.

Lee C O. Multigrid methods for the pure traction
problem of linear elasticity; mixed formulation []].
SIAM ] Numer Anal, 1998, 35. 121.

Lee Y J, Wu J, Chen J. Robust multigrid method

for the planar linear elasticity problems [J]. Numer



826

W)l K

FRCH AAF RO

% 56 &

[17]

[18]

[19]

[20]

[21]

Math, 2009, 113. 473.

Neuss N. V-cycle convergence with unsymmetric
smoothers and application to an anisotropic model
problem [J]. SIAM Numer Anal, 1998, 35; 1201.
Scott . R, Zhang S. Finite element interpolation of
nonsmoothing functions satisfying boundary condi-
tions [J]]. Math Comput, 1990, 54: 483.
Stevenson R. Robustness of multi-grid applied to
anisotropic equations on convex domains and on do-
mains with reentrant corners [ J]. Numer Math,
1993, 66. 373.

Stevenson R. New estimates of the contraction
number of V-cycle multi-grid with applications to
anisotropic  equations [ M ].  Braunschweig:
Vieweg, 1993.

Wang L, Luo K, Zhang S Q. Weak Galerkin finite

element method for fourth order singular perturba-

tion problems [J]. J Sichuan Univ; Nat Sci Ed(JY

[22]

[23]

[24]

[25]

[26]

[27]

N2 FARBHERRD - 2018, 55: 1141,

Wu Y, Chen L, Xie X, etal. Convergence analysis
of V-Cycle multigrid methods for anisotropic elliptic
IMA Numeri Anal, 2012, 32; 1329.
Xu J, Zikatanov L. The method of alternating pro-

equations [ J].

jections and the method of subspace corrections in
Hilbert space [J]. ] Am Math Soc, 2002, 15; 573.
Xu J. Theory of multilevel methods [D].
Cornell University, 1989.

Ithace:

Xu J. Tterative methods by space decomposition and
subspace correction [ J ]. SIAM Rev, 1992,
34, 581.

Yserentant H. Old and new convergence proofs for
multigrid methods [ J]. Acta Numer, 1993, 2. 285.
Yu G, XuJ, Zikatanov L.

method for anisotropic diffusion equations on aligned

Analysis of a two-level

and nonaligned grids [J]. Numer Linear Algebr Ap-
pl, 2013, 20, 832.

T T S T A S S T S e A S S e
+ Sl AETEN:

+ e LT SRR TR, ) SRR PPN £ B VRS TRIALT) DI f AR T

f 2

+ 019, 56. 819.

+ L W BAIY H, WU Y K, QIN Y M. Robust V-cycle multigrid method for anisotropic linear elasticity problems +

+ [J]. J Sichuan Univ: Nat Sci Ed, 2019, 56. 819.

B G G G S G S O P U U O SO G U S O SO U S SO U

e

B

+



