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Pitchfork bifurcations of a three-dimensional system
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Abstract: This paper aims at the pitchfork bifurcations of a three-dimensional system, in which each e-
quation in the system contains a single quadratic cross-product term. The change of the number of equi-
libria of the system as one parameter varies near a critical value, i. e. , the pitchfork bifurcations for one
parameter, is analyzed. The stability of the equilibria generated by the pitchfork bifurcations is investi-
gated as well.
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1 Introduction

Three-dimensional differential systems are
investigated widely because of their plentiful dy-
namical phenomenon. In 1963 Lorenz'" found the
first chaotic attractor in a three dimensional sys-
tem, From then on, various three-dimensional
systems, such as Réssler system, Chen system,
Lii system, Liu system, Bao system, Pehlivan
system, Jafari system and Sampath system™>ezc,
have been proposed.

In Ref. [10], Qi et al. considered a three-di-
mensional nonlinear system, in which each equa-

tion contains a single quadratic cross-product
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term, which is described as

J.%:a(yfx) +yz,

V=Ccxr Ty XL, (D

1% =xy —bz
where (x,y.2) €R®, (a,b,c) €ER% and 1= dx/
dt, y:==dy/dt, 2:=dz/dt. Qi et al. numerically
analyzed the basic properties of System (1) by
Lyapunov exponents and bifurcation diagrams. In
Ref. [11], the pitchfork bifurcation in System (1)
was investigated by the classical center manifold
method for the case that a1 and ¢ changed near
1. In Ref. [12] Qi and Liang investigated the me-
chanics of System (1) by comparing it with Kol-

mogorov system, Euler equation and Hamiltonian

EBE®IT: Hiveh. 5. WA, ERORONE M TS 3 ) RS Email: ningweiyang@yeah. net



826 w)Il K FFRCH R F ) % 57 %

function. In Ref. [ 13 ], System (1) was trans-
formed into the Kolmogorov type system to inves-
tigate the mechanics of the system. For System
(1), the phase portrait and trajectories is shown
in Ref. [14] for some initial conditions with col-
ors.

In this paper, we continue to study the pitch-
fork bifurcations in System (1) and consider that
¢ changes near 1 and no matter a>1 or a<<1. Our
main method is to use the parameter partition de-
termined by the number of equilibria, which is es-

sentially different from the center manifold meth-
od used in Ref. [11].

2 The pitchfork bifurcations

Let

A ={(a,b,c) €ER% ; —4a +a* +2ac+c* >0,
d—e>0},

Ao ={(a,b,c) €R’} . —4da +a® +2ac+* >0,
d—e<0,dte>0},

As ={(a,b,¢) €ERY . —4da +da*® +2ac+* >0,
d—e<0,d +te<0},

A ={(a,b,c) ER’ . —4da+a® +2ac+=0,c
>aj,

As ={(a,b,c) ER’ . —da+a® +2ac+c* =0,c
<aj,

As = ={(a,b,c) ER : —da+a’® +2ac+c* <0}.
Clearly, IiJlAi:Ri.

Lemma 2.1 (i) System (1) has five equilib-
ria E¢,E\,E,,E;,E, if and only if (a,b,c) €EA;;

(i1) System (1) has three equilibria E,, E;,
E,, if and only if (a.b,c) €Ay UAy;

(iii) System (1) has a unique equilibrium E,
if and only if (a,b,¢) €As UAs UAs,
here E¢,E,...,E, lie at (0,0,0),(x1,y1.21)>
(=1 —y1521) s (@20y2520) s (—225 —y2,25) Te-

spectively, and

— /d +e — /d—e
e 2a 2a
— 2d +2e abc
Yie a f[+e’

— 2d —2e abc
Yo a f—e’

—(dte)c —(d—ec
T fte z2r f—e ’
d:=—2ab-+abc+bc?,

2

e'=yb*c*(—da+a® +2ac+c*)

fi=abc +bc* (2)

Proof
aly—x) +yz=0,

By solving

cx—y—xz=0,
xy —bz=0,
we get that
y=bcx/(x" +b) ,z=ca’/(2* +b) (3)
and x satisfies
ax® +2ab—abc —bc*) x* + (ab* —ab*c)x =0
€]
Obviously, =0 is one root of (4) and all nonze-
ro roots satisfy
ax* +(Q2ab—abc —bc*) x* +ab* —ab*c=0 (5)

Then x = + % , where d and e are given in
(2).

In the following, all possible cases are con-
sidered.

(DU e>0,d—e>0, i e, (a,b,c) €As
then (5) has four distinct nonzero real roots x;,
Xos —a1s — X2, given in (2). Correspondingly,
we get yisyzs —Yis — 221522 by (3). There-
fore, there are five equilibria E,,E,,E,.E;,E,.

(1) If e>0,d —e<<0,d te>0, i.e. s (asb,c)
€ Ay, then (5) has two distinct nonzero real
roots x;, —x; given in (2). Correspondingly, we
get y1, — 1,2 by (3). Therefore, there are three
equilibria E,,E, . E,.

(i) If e>0,d —e<<0,d +e<<0, i.e., (a,b,
¢) € A;, then (5) has no nonzero real roots.
Thus, there is a unique equilibrium E,.

(v) f e=0,c>a, i.e. s (asb,c) €Ay then
(5) has two distinct nonzero real roots x;, — a1 »
given in (2). Correspondingly, we get y;» —y;.,
21 by (3). Therefore, there are three equilibria
E,.E,.E,.

(v I e=0,c<a, i.e., (asb,c) € A;, then
(5) has no nonzero real roots. Thus, there is a u-
nique equilibrium E,.

(vi) If e is not real, i.e. , (asb,c) € As, then
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(5) has no nonzero real roots. Thus, there is a u-
nique equilibrium E,.

Now we study the bifurcations of equilibria
when parameter ¢ changes near 1.

Theorem 2.2 Let 0<<e<<1. (i) Assume that
a=1. The pitchfork bifurcation happens when ¢
changes from 1 to 1+e¢, and the number of equi-
libria of System (1) changes from 1 to 3.

(i1) Assume that a <<1. The pitchfork bifur-
cation happens when ¢ changes from 1 to 1 —e,
and the number of equilibria of System (1) chan-
ges from 3 to 5.

Proof When a>1 and ¢ =1 in (2) we have
d+e=0,d—e<0, i.e., (asb,c) €Ay, Whena=
1 and ¢=1 in (2) we have e=0,a=c, i.e. , (a,b,
¢) €As. Thus when a==1 and ¢ =1, System (1)
has a unique equilibrium E, by Lemma 2. 1.
When a=1 and ¢ =1 +e, from (2) we get e >
0 and
2a*be/(a—1) +O(?) >0, a>1,
20" +0(e) >0, a=1,

(2 =a)b+06) <0, a>1,

‘° { —2be"* +0(e) <0, a=1.
Thus (a,b,c) € Ass i.e., System (1) has three
equilibria E,,E, ,E, fallows from Lemma 2. 1. (1)

d+te=

is proved.
When a<<1 and ¢c=1, we have d +e>0, d —
e=0. Thus (a,b,c) €Ay, i.e. , System (1) has

three equilibria E,, E,, E; follows from Lemma

a

a_._a*l

1iae FOG) .

et o[-t 10

Thus the characteristic equation at E| is
A a+b+DAE+ (ab+b+0(? A+
2abe +O(e?) =0,

whose coefficients satisfy
Ap=a+b+1>0,
at+b+1 1

Az:_ 3 3 -
2abe +O(e2) ab+b+0(2)
(@a+b+1) (ab+b+0(e?)) —

JED=|1+

e+O0GE?)

2.1. When a<<1 and ¢ =1 —¢, we get ¢>0 and
d—e=2a*be/(1—a) +O(?) >0.

Thus (a,b,¢c) € Ay» i. e., System (1) has five

equilibria E,,E,,E,,E;,E, follows from Lemma

2.1. From the x-coordinates of E;, E,, we find

that E;,E, appear by the pitchfork bifurcation of

E,. (i) is proved.

3 The stability of equilibria

In Theorem 2. 2, the pitchfork bifurcation of
E, happens when ¢ changes near 1. In this sec-
tion, we study the stability of those equilibria bi-
furcated from E,.
Theorem 3. 1
ring by the pitchfork bifurcation of E, when a >1

Equilibria E, and E,, appea-

and ¢ changes from 1 to 1 +e, are locally asymp-
totically stable.
Proof

the z-axis and E; is the corresponding symmetric

Since System (1) is symmetric about

equilibrium of E,, we only need to consider E,.
When a>>1 and c=1 +¢, we get

AR RO
a—1

_ | ab 1
M TA 1€ +0(e)

and

—- € +0®?)

21 =
a

by (2). The Jacobian matrix at E; is given by

ab

- 716% +0Ce)

ab

a—1

e? 10 |

—b

(2abe +O(?)) >0,

atb+1 1 0
Ag=|2be +OC3) ab+b+Oe?)  atb+l | =
0 0 Zabe +O?)

(2abe +Oe*)) A, 0.
Then, all eigenvalues have negative real parts fol-
Thus
E, is locally asymptotically stable, so does E.

lows from the Routh-Hurwitz Theorem ",
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When a=1 and c=1+¢, we get

:«/Es% +%@€% +0C),

and

— +%s+o<e%>

Mo
, by (2). The Jacobian matrix at E; is
v = be T *JZE&% +0(Ce) Y |
1 14t +%e+o<e%’> Jhet —gs +O(e)
JE) =|1—¢* +%e+o<e%> 1 —Jbet —%@s% Lo |
Jbe T Jfﬁ +O0®e)  be + be T +0Ce) —b

Thus the characteristic equation at E| is
X HO+E2DOA2+FQ2b+0 )N +4be +

O(e7) =0,

whose coefficients satisfy
Ayp=b+2>0,
(b+2) 1
Cabe+OG6T) 2400
(b+2)(26+0(e)) —4be +O(eT) >0,
(b+2) 1 0

Ag=|dbe +OGET) 26+0C) b+2 =

0 0 4be +0GT)
(4be +Oe ™)) A, >0.
Then, all eigenvalues have negative real parts fol-

Thus
E, is locally asymptotically stable, so does E.

lows from the Routh-Hurwitz Theorem' ",

Theorem 3. 2 Equilibria E; and E,, appea-
ring by the pitchfork bifurcation of E, when a <1
and ¢ changes from 1 to 1 —¢, are unstable.

Proof

the z-axis and E; is the corresponding symmetric

Since System (1) is symmetric about

equilibrium of E;, we only need to consider Ej.
When a<<1 and c=1

ab

—e, we get

N 7 +0(e),

Vo =4/ 1ab e? +0®)

i e +0G?)
a

and

Zy =

1
by (2). The characteristic equation at E; is

XA atb+ DA%+ ab+b+0ET A —

2abe +0(e*) =0 (6)
whose coefficients satisfy
Ap=a+tb+1>0,
atb+1 1

—2abe +()(e%3 ) ab+b +()(e% )
(a+b+1) (ab+b+0(e?)) +2abe +

A=

Oe?) >0,

A3:=

atb+1 1 0
b +OCe? ) ab+h+O(e? ) atbl| =
0 0 —2ktO(e?)

(—2abe +O(e*)) A, <0.
Then, some eigenvalues have positive or zero real
parts follows from the Routh-Hurwitz theo-

151 Obviously, there is no zero root by the

rem
expression of (6). If (6) has a pair of pure imagi-
nary roots Tiw (w#0), substituting A =iw into
(6) we get

—iw® —(atb+Dw’ +(ab+b+0E?))in—

2abe +O(e*) =0,

i.e.

[ —(ab+b+O0GE)w =0,

L (a+b+1Dw? +2abe +O?) =0
Clearly, (7) has no solution for . Thus (6) has
Therefore,

P

eigenvalues with positive real parts.

E, is unstable, neither does E,.
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