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On the length of the longest consecutive switches
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Abstract; As a class of simple mathematical models, tossing an unbiased coin independently has exten-
sive applications in many fields. The length of the longest head-run has been long explored by many
scholars. Up to now, there is still a lot of results on the extension of this problem and their applica-

tions. In this paper, we study the length of the longest consecutive switches and present several limit

theorems.
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1 Introduction

An unbiased coin with two sides named by
"head" and "tail" respectively, is tossed n times
independently and sequentially. We use 0 to de-
note "tail" and 1 to denote "head". For simplici-
ty, we assume that all the random variables in the
following are defined in a probability space (Q,F,
P). Let {X;,i>1} be a sequence of independent
and identically distributed random variables with

€1
2

Xy Ao +X,,n=1,2,++, and

P{X] :O}:P{Xlzl}: . Let S():O,S”:X1+
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0==n=<N—K

N=K,N,KeN (D
Denote by Zy the largest integer for which I(N,
ZN) =Zn. Then Zy is the length of the longest
head-run of pure heads in N Bernoulli trials.

The statistic Zy has been long studied be-
cause it has extensive applications in reliability
theory, biology, quality control, pattern recogni-
tion, finance, etc. Erdos and Rényi'! proved the
following result;

Theorem 1.1 Let 0<<C, <<1<<C,<<co, Then
for almost all w € Q, there exists a finite N, =
No(w,C,,C3) such that [ CilogN ] < Zy <
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[C,logN] if N=Nq.

Hereafter, we denote by "log" the logarithm
with base 2, and by [x] the largest integer which
is no more than x. Theorem 1. 1 was extended by
Komlos and Tusnady"*. Erdos and Rényi™ pres-
ented several sharper bounds of Zy including the
following four theorems among others.

Theorem 1. 2
Then for almost all w € Q. there exists a finite N, =
Ny (wse) such that if N=N,, then Zy=[logN —

log log log N +log log e—2—¢].

Let ¢ be any positive number.

Theorem 1.3 Let ¢ be any positive number.
Then for almost all w €, there exists an infinite
sequence N; = N, (w,e) (i =1,2,++) of integers
such that Zy <<[logN; —log log logN; +log log
e—1+e].

Theorem 1.4 Let {y,} be a sequence of

positive numbers for which 2 27" = oo, Then

n=1

for almost all w € Q, there exists an infinite se-
quence N; =N, (w, {y,})(i=1,2,++) of integers
such that ZN, ZYN. .

Theorem 1.5 Let 5, be a sequence of posi-

tive numbers for which 227% < oo, Then for

n=1

almost all w € Q. there exists a positive integer
N, =N, (w-{8,}) such that Zy <6y if N=N,.

These limit theorems have been extended by
many authors. We refer to Guibas and Odlyz-
ko', Samarova®', Révész®', Nemetz and Kuso-
litsch!™, Grill"® and Vaggelatou'.

The distribution function of Zy and some re-
lated problems have been studied by Goncha-
rov-', Foldes', Arratia et al. "), Novak!* ',
Schilling*, and Embrechts'™,
Muselli'®, Vaggelatou®, Tari'"’, Novak™",

Mao et al.*" studied the large deviation behavior

Binswanger

for the length of the longest head run. For more

recent related references, we refer to Asmussen et
al.™), Chen and Yu®', Li and Yang*', Paw-
elec and Urbanski®®’, and Mezhennaya /.
In 2012,

"switch", and considered the bounds for the num-

Anush posed the definition of

ber of coin tossing switches. In 2013, Li"*” con-

sidered the number of switches in unbiased coin-
tossing, and established the central limit theorem
and the large deviation principle for the total
number of switches. According to Li**"', a "head"
switch is the tail followed by a head and a "tail"
switch is the head followed by a tail.

Motivated by the study of the longest head-
run and the work of Li'*", we will study the
length of the longest consecutive switches in this
paper. At first, we introduce some notations. For
m, n€N, define

ntm—1

S (H) = 2 a1—-X.DX,,
i=mtl
ntm—1

ST = D) X (1 — X)),
i=mt1

Then S (H) (resp. S (T)) denotes the num-
ber of "head" switches (resp. "tail" switches) in
the trials {X,, s X100 Xoeno1). Set

Sy =S (H) +S (T) (2
Then S denotes the total number of switches in
the sequence {X,,, X, 15 s X012

For i, NEN, define

H R 1{5,(1’”) =n—1},n=1,--,N.
Then w € H,‘,ﬂ\,{)‘implies that there exists at least
one sequence of consecutive switches of length
n—1 in the sequence {X; (@) s X1 (w) sy Xign+1
(w)}. Define

M :]Tg\x\{nfl\Hf,\P (5} (3)
which stand; 1;or the number of switches in the
longest consecutive switches in the sequence {X;,
X1y s Xiint1 ). When i=1, we denote My in-
stead of MY’.

Remark 1 Note that by (3), the length of
the longest consecutive switches in the sequence
{Xi aXivl [ 9Xi+:\l+l } is M(\'> +1.

We use A, +A, ++++ A, instead of A; U
Ay« UA, when the sets A;,i =1,

joint. The rest of this paper is organized as fol-

<y n are dis-

lows. In Section 2, we present main results. The
proofs will be given in Section 3. In Section 4, we

give some final remarks.

2 The main results

In this section, we present several limit re-

021002-2
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sults on My. Corresponding to Theorems 1. 1~
1.5, we have the following five theorems.

Theorem 2.1 We have

lim =1 a.s. 4)

My
N-cologN
Theorem 2.2 Let ¢ be any positive number.
Then for almost all w €, there exists a finite N, =
Ny (wse) such that if N>N,,
My =[logN —log log logN +
log loge —2 —¢ = a1 (N) (5
Theorem 2.3 Let ¢ be any positive number.
Then for almost all w €, there exists an infinite
sequence N; = N, (w,e) (1 =1,2,
such that
My, <<[logN; —logloglogN; +
loglog e —1+e f=a,(N) (6)
Theorem 2. 4

) of integers

Let {y,} be a sequence of

positive numbers for which E 277 = oo, Then

n=1

for almost all w € Q, there exists an infinite se-
quence N; =N, (w, {7, 1) (1 =1,2,
such that My =y —1.

Theorem 2. 5

) of integers

Let 5, be a sequence of posi-

tive numbers for which 22’”" < co, Then for

n=1
almost all w € Q. there exists a positive integer
Ny, = Ny (w, {5,)) such that My <oy — 1 if
NZ=N,.
The last two theorems can be reformulated as
follows.

Theorem 2. 4 Let {y,} be a sequence of

positive numbers for which 22 7n = oo, Then

n=1
for almost all w € Q, there exists an infinite se-

quence N; =N, (w, {y, ) (@ =1,2,-
such that S?\Zﬁhvﬂ =yn, — L

Theorem 2. 5"

) of integers

Let 5, be a sequence of posi-

tive numbers for which 22’”" < co, Then for

n=1
almost all w € Q. there exists a positive integer

Ny =Ny (ws {8, 1) such that S5~ <oy —1if

N=N,.
Remark 2

respect to Theorems 2. 4 and 2. 5 is Guibas and

The closely related result with

Odlyzko"" ( Theorem 1).

3 The proofs of the main results

Proof of Theorem 2. 1 Step 1. We prove

NéEN and

liminfi—+

log >1 a.s. For any 0<le<<l,
N—>co

NZ=2, we introduce the following notations;
t=[(1—e)logN]+1,N=[N/t]—1,
U, =S*"Y k=0,1,+-,N,
where SV is defined by (2). Then the sequence
{U,,0<k<<N} of random variables are independ-
ent and identically distributed with U, <<t —1 and

PU, —1—1) =2+ %:2},1. Tt follows that
P{U,<¢t—1,U, <t—1,-,Uy<t—1} =
1\
(1)
By a simple calculation, we get that 2
N=1
1 N+1
(1 *F) < oo, Then by the Borel-Cantelli
My
lemma, we get that hmmf1 >=1—¢. By the ar-
gN~—
bitrariness of e, we obtain that liminf1 o>
N-—>co OgN

a. S.

Step 2. We prove hmsule <1 a.s. For

any e >0 and N € N, we introduce the following

notations:

—ut1

u=[(1+0logN]+1,Ay = U (S —u—1}.
We have P{S® —u—1) :271,1 and thus P(Ay) <

N

2[(1 fe)logN] *

holds that

EP(AK 22 kl(H’e) = 22 kle

whlch together with the Borel—Lantelh lemma im-

For any T € N with Te>1, £ €N, it

plies that

. . kT*qul X
P(A; 1. 0.) :P(115HSUp U {8y =u-1p)=
It follows that
lupsupl —<1 a.s. (7

Let kT <n<<(k+17T. By (7), we have

021002-3
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M, <M(k+1)T <(1 +s)log (F+DT<
(1+2e)]loghk” <<(1+2¢)logn
with probability 1 for all but finitely many n.

My
—— <
lOgN\l a. S.

Now we turn to the proofs for Theorems
2.2, 2.3, 2.4" and 2. 5" . The basic idea of these

comes from Ref, [7]. For the reader’s conven-

Hence we get that limsup
N—>co

ience, we spell out the details. At first, as in
Ref. [7, Theorem 5], we give an estimate for the
length of consecutive switches, which is very use-
ful in our proofs.
Theorem 3.1 Let N, K €N and let My be
defined in (3) with i=1. Then, if N=2K, then
!
(1 7K2?<L2 ) [%]
<17K2i2)[%[%’]]

To prove Theorem 3. 1, we need the follow-

(8

ing lemma.
Lemma 3.2 Let N,m €N and let M be
defined in (3). Then

N+2
28

Proof Since {M$Y,i €N} are identically dis-

tributed, we only consider the case that i =1 in

P(M =N—1) = (9

the following. Let
A={My;y=N—1},
Ay ={M{$""=N—1},k=0,1,-+,N.
Then we have
A=A, +AA, FAA A, -+
AgA - Av 1 Ax (10
and

P(Ao):%,P(AoAr"Ak A =

%,]@:1’...’]\]'
Hence
P(A) =P(A,)) +P(AA) +P(AAA,) +
e +P(AJA, " Av_ 1 AN) =

1 N N-+2
2N-1 TN 9N
Proof of Theorem 3.1 Let N,K €N with N>
2K. Denote

B;={M{"™"=K—1},;=0,1,--,N—K,

%28
. 7(“1)k o N—ZK
(/l_jLJIkBjal_Ovlv"'a[ K :|.
Then for any /=0,1, -, [N;{ZK], we have C, =
(MY =K — 1}, and for any / =0, 1, -,
[N;(ZK] —2, we have C, NC,», =¢J. By Lem-
ma 3. 2, we know that for any [ =0, 1, -,
N—2K K—+2
Sg ] Pen =R
Let

Dy =Co +Cy +ooe +Co[ L[ 2277 »
Dy =Cy +Cy e +CaL ] 1 (D
By the { Coy Cpy -o-,
Co[ L[ ¥ ) we have
P(Dy) =P(Co)P(Cy)++-P(Co[4[252877]) =

independence  of

K42\ R0
(1 oF ) (12)
Similarly we have
_ [z [ ]-v]+n
P(D) = (1 —Kzﬁz) (13)
By the obvious fact that D, C{My =K —1}, we
get that
PMy<K—1)<P(D,) =
1 ;\7(21( 11
(17K2i2)[.[ ] (11

In the following, we prove that P(D,D,) =
P(D,)P(D,). To this end, by (11), it is enough
to prove that for any i = 2/, [ =0, 1, -,
[l[N*ZK

2 K
we give the proof for /=0 and the proofs for [ =
Lo [N 2K

H,P(DIC,-)>P(D1)P(C,). Below

2 K
FOI‘ 7 :17 "‘,K +17 denote Fl' = {(X[a “tty
X, x—1)is the first section of consecutive switches

"X2K>}.

]] are similar., We omit them.

of length K —1 in the sequence (X, -+

Then we have
K+1
F.NF,=,Yi#j,C, = -HF"’
and

P(F) =P {(Xy, -
_ 1

switches} oK1

+, Xk ) has consecutive

P(E) =P{(X,,

switches, X; | =X} :ZLK =2, K.

+» Xj+k—1) has consecutive

021002-4



% 2 BN, F. mKkES RGO KE % 58 &

By the independence of {X;,j=1,2,++,N},
we have

P(D,F,)=P(D)P(F)) (15)

P(D, Fy)=

P(D, N{(X;,++y Xk41)} has consecutive
switches, X; =X, }) =

P(D, N{(X;, -
switches, X| =X, , Xk =1)) +

P(D; N{(Xs,+, Xxy1)} has consecutive
switches, X, =X, , Xg+, =0}) =

2P(D; N{(X,,++, Xk+1)} has consecutive
switches, X; =X, , Xg+ =1}) =

2P (D N{Xg41 =1} P{(X;,++, Xg) has

consecutive switches, Xx =0, X, =X,}) =

*» Xk11)} has consecutive

%J%DQZPULM%B> (16)

P(D, F;)=(suppose that K =>=3)

P(D, N{(X;, -+, Xx+2)} has consecutive
switches, X, =X;}) =

P(D, N{(X;, -+, Xxe»)} has consecutive
switches, X» =X, (X1, Xk2) =0,D}) +
P(D, N{(X;, -+, Xxes)} has consecutive
switches, Xo =X, (Xg11,Xgi2) =(1,00}) =
2P(D; N{(X;, -
switches, Xo =X, (Xg+1,Xgi2) =0, }) =
2P({(X;,+*+, Xk) has consecutive switches,
Xk =1,X,=X;}) XP(D; N{(Xgs1+ Xgep) =

0, D) ZZTJ;ZP(Dl N (Xkv1s Xkr2) =

+y, Xk+2)} has consecutive

(0, 1) }) =4P(Dy N{(Xkgs1,Xxy2) =
(0, D P P(F;) an
By the definition of D;, we know that
P(D; N{(Xks15 Xge2) =0, }) =
P (D) N{(Xkt1 5 Xk+2) =0,00})
P(D, N{(Xkgs1,Xg2)=00,D}) =
P(Dy N{(Xk15Xki2) =1, D))
P(Dy N{(Xk11:Xk2) =0, D }) =
P(D, ﬂ{(XKHssz):(l,O)})s
which together with (17) implies that
P(D,F;) —P(D)P(F;) =
{PU( Xk, Xki2)=0,D}NDy) —
PO (Xky1sXk2)=00,00} NDy) +
P (Xki15Xk+2) =0, D} NDy) —
PU{ Xk s Xk=2) =1, D} ND) yP(F3) =0
(18)

Similarly, if K=4, we have that
P(D\F)=P(D)P(F),Yi=4,-,K (19
Finally, by the definitions of D, and Fxi,, we
know that D, NFkx.1 =Fk+1. Hence we have
P(D\Fgy1) =P(Fg1) =ZP(D)P(Fg 1) (20)
By (15), (16), (18), (19) and (20), we obtain

K+1

P(D, NCy) = D> P(D, NF) =
i=1
K+1

>IP(D)P(F) = P(D)HPCy).
=1

It is easy to check that
P(D,D,) =P(D,)P(D,)&P(D,D,) =

P(D)P(D,).
Then by (12) and (13), we get
P(D,D,) =
(1K) BTl O 0

2D
As to the right-hand side of (21), we have

(1) When[N

—2K7 . .
K ] is even, the exponential

part on the right-hand side is equal to
1TN—2K 1TN—2K
2Lk 2l k
N—2K
R enihat

(11) Wh€1’1|:N

J-1+2-=

IEZK] is odd, the exponential

part on the right-hand is equal to
IFN-2K7 1 ,F1TN-—2K7 17.,_
?[ K ] 2+[2[ K } 2]+2
[N*ZK
K

]+L

Hence
P(MN <K71) :P(D()D] ) >

N—2K

K2\ LR
(1)
By (14) and (22), we complete the proof.

(22)

To prove Theorem 2. 2, we need the follow-
ing lemma.
Lemma 3.3 Let {a;,j=>1} be a sequence of
positive numbers. Suppose that lima; =a > 0.
jress
Then we have E % <+ coifa>2, and X
c =1

)
j=1 @j

] =

W
+oo if a<<2.
Proof We have

021002-5
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Z] loga 2 = Z]flog” .
alﬁ% 2
If a>2, then p=loga>>1 and thus
Sa

E] logg 2] loga ]7:Ogaf _
Zrﬁ U < e

If a<2, then p=log a<<1 and thus

loga

loga — 2 ~—loga J ! J —
21 5

Syt = e,
j=1
Proof of Theorem 2.2 Let N; be the smal-

lest integer with «; (N;) + 1 = j. Since

%
lim(l ﬂ) - =1, there exists M € N such

j>os 2
that M>2 and
+2 .
(1 %) <2, Vj>M.
Then by Theorem 3.1, we have

EP My, <

EP My, <a (N} <j—1 <

+2
(-t
(-7
“ (40310 _
j:M_H(l > 2)
e 307
B+,%1(1 7%2)7%7% _
B+2j§+l(1 ] ;2)2’ .
p+2 E o) LL
e
e K .=<1+];2>7JZTZ By lll»r2<1+%>’:e7
we have
- (23)

joo

Without loss of generality, we assume that e¢; =2

for any j >M. By a1 (N;) +1=j, we have
j<logN; —logloglogN; +logloge —1 —¢

and thus

N, 21“ * loglogN;

o = Toge ,logy <<loglogN;.
Thus
S (e

E(ﬁn %ﬁ

J
oglogN; 1
- " "1 <

MR

1
olte

J=Mt1
oo 1 77 loglngNj >0 1 Hjiﬁog/
j=M+1 eloge J=M+1 eloge

For any ¢>0, by (23), we have lime; T — e —

jeo

(e")* =2 >2. Then by Lemma 3. 3 and the
Borel-Cantelli lemma, we complete the proof.

To prove Theorem 2. 3, we need the follow-
ing version of Borel-Cantelli lemma.

Lemma 3. 4(Kochen and Stonet®®’)  Let A,,
As, -+ be arbitrary events, fulfilling the condi-

tions EP(A,,) = oo and

n=1

S PAAD
hm1nf 1<<k<"I<n 1 (24)
n—>o0 Z P(A}')P(A )
1<<k<<I<n

Then P (limsupA,) =1

n—>co

Proof of Theorem 2.3 Let §>0. Let N; =
N, (8) be the smallest integer for which a, (N;) =
[7'79] with a2 (N;) given by (6). Define
A =My, <az(N)D} =
{My, <[]+ —1}.5=1 (25)
By Theorem 3.1, we have

Spay =D (1-
=l =

N
]+ 3)%"514}1 >

AT =

ZD.H-x?]H( [Hopy N )

I TR T T ITEY
> (1) =
p
Zf DH)]? [ﬂ” H (26)
[j11]+3 oI
146 2
where f; ==(HW) ST Asin (23),
we have
limf,=e 27
e
Then there exists M €N such that M>2 and
fi=2.¥j>M (28)

By (6) we have
logN; —logloglogN; +logloge +e<<[ ;'] +1,

021002-6
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which implies that

N; <1oglogNj
ol 1+1 T 2¢loge *

Then by (26) and (28), we get

T H’S] 43 loglog\

ZP(A ) + 2 £, O Fl

j=MH1

DIPA) =
=1
29
Let 0<<e<<1 satisfy
[ ]=[logN, —logloglogN; +logloge +e |
>eologN;, Vj=1,2,

Then log N; <€l « 7179, which implies that
0

loglogN, <log Ei +(1+0logj (30)
0

Hence we have

[Hm 3 loglog'\

E f 03 Floge =

j=M+1
LI;‘J —logloge—e« (— loglog\l )

1+6
Zf Cao >

=M1

L0143, —logloge—e~ ¢ mgi 1+ logi)

2 fi o oy 0 (3D

j=M+1
For any given positive number e, by (27),

we have
814y 14s s
limf; RO ’Ehw =25 <2 (32)

joo

(29,

when ¢ is small enough. By Lemma 3. 3,

(31) and (32), we get that EP(A,,) = o,

n=

Recall that {A;,j =1} is defmed in (25). For
i<<j, we define
{{M.\'i <0(2(Nj)}9 N, 2(12(]\7_/)’
iy

Q, otherwise,

C' ':{M(‘V’ \7) <a2(N )}

We claim that
P(A;))=P(B;;)P(C;;)(1+0(1)),
i <jroo (33)
In fact, by the definitions of A;,B;; and C,;, we
know that
A, =B, NC;; N{M
az (N .
Then (33) is equivalent to
- P(B.,; NC,, ﬂ{MEEaVZ(\?%(\y))VOH) <a: (N )
i P(B,;NC:) !
<:>l1mP( {MSE)?&%%)’)VOH) <a: (N} B, NC.;) =1

SlimP (MY NV =a, (N B, NC,p) =0

o, (N VOo+1)
a, +1 <

(34
By the definition of C;;, we get that
P({MEEV(\‘Q‘\T DVOTD
QZ(N]) ‘ Bl,j ﬂ (Ji,j) -
N.—1
i 3} _
P(k:m\/,wz%j))voﬂ (Mo
e (N) ]I B, NC,;) <
N.—1

>, P(IM&y,n =

k=(N;—ay (N; DV 041
(NI B, NC,.;) <

pa P<M£§3N_,.m =a;(N;)) B
P(B,,;))P(C,;) n

k=(N;=ay (N;) V01
Nl‘ —1
ZGZ(NJ)P(B,.,')P(CI"/)
N; —1 . 1
20N " P(B; ;) )P(C; ;)

By Theorem 3.1, we have that when j is large e-

<

(35

nough,

P<Ci.j) :P(M(w\f‘\}) <a2<N )) _P(M(\VJ\}) <(0(2(N') +1) -1 =

(1-22 +3)[W]1 -

90, (NDFI

<1 M) :2:N ;*; ([azw >+1] 1) - (

94, (NDF1

_O’Z(N]‘) +3

1 9a, (N)FI

g (NP1 N ay (N)+3
a2<\>u (I:m —1)- (*?a?m’/)ﬂ)
) .
ay (N3
2y (N >+1) 1
ﬁz (36)

as j—><o, When N, =q,(N;) and i<(j, by Theorem 3.1, we have

P(B,)) =P(My  <a:(N;)=P(My_, <(as(N)) +1) —1) >(1 -

(1-2 53y g (L]0 - (e -0

ZQZ(Nz‘ )1

20, (NDHT

(NH+1 N ag(N-)+3
_ 22 . ap UN;TS
9y (N)F1

021002-7
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22 N 1_( Ni )( ay (N +3
<1 O(?(N)JrB) a;(\ 573 2y (N1 az(\ﬂl

20, (NDT1

N, 0, which

as j— oo, where we used hmA
J N oe, (NDF1

can be deduced by the deflnmons of N; and N;—;,
and the mean-value theorem for the function 1"1 ’,
By (35) ~(37), we obtain (34). Hence (33)
holds.

Similar to (33), we have

P(AA;) =P(A)DP(C;;)(1+o(1)),

i <jrco (38)

By (33) and (38), we get

PADPA)

P(AA;) = P(B.,)

(1+o0(1)),
l<]~>oo .
which together with (37) implies that

PAA)  _1+o(1) _
P(ADP(A) P(B.)

1+o0(1), i<j—>co 39

By the fact that D) P(A,) = = and (39). we

n=1

know that (34) holds. By LLemma 3. 4, we com-
plete the proof.

Proof of Theorem 2. 4"  Let A, ={S)" "’ =
¥, —1}. Then we have P(A,) =2 « 277, which

together with the assumption implies that
2 P(A,) = co. By following the method in the
n=1
proof of Theorem 2. 3, we have
PAA) o
P(AI)P(A]) 1+0(1)9] .

Then we get that (34) holds and thus by LLemma
3. 4 we complete the proof.

Proof of Theorem 2. 5"

Let B, :{Séf‘w =

8, —1}. Then we have >, P(B,) =2+ 2%, which

n=1

together with the assumption implies that

SYPB) < .

n=1
we get the result,

By the Borel-Cantelli lemma,

4 Final remark

After the first version of our paper was up-

loaded to arXiv, Professor Laurent Tournier sent

(37

two emails to us and gave some helpful com-
ments. In particular, he told us one way to re-
duce consecutive switches to pure heads or pure
tails by doing the following: introduce a sequence
(Y,) such that Y,, =X,,, Y511 =1 —Xs,11. Then
(Y,) is again a sequence of independent and unbi-
ased coin tosses. And a sequence of consecutive
switches for X is equivalent to a sequence of pure
heads or pure tails for Y. Then Theorems 2. 1 and
2.5 can be deduced easily from Theorems 1. 1 and
1.5, respectively.

We spell out all the proofs with two reasons.
One is for the reader’s convenience. The other is
that as to biased coin tosses, it seems that Theo-
rems 2. 1 and 2. 5 can not be deduced directly
from Theorems 1. 1 and 1. 5, respectively, and
We will

consider the biased coin tosses in a forthcoming

our proof may be moved to that case.

paper.
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