2021 %7 A
MO8 H A

vl K FRCE RFAF R Jul. 2021

Journal of Sichuan University (Natural Science Edition) Vol. 58 No. 4

BEMNMRITEANTEREN
Z&-Liénard 25 B FE B A%

T, PRXR

(PUNNRAAHF e IR 610064)

O E. AR T AANHRER S, B AN L Lienard 2 %69 FHE 4. d@idde R4
R — AN BV B BN SE ik £ & F A %) Poincaré Bedt, KIGEM T AL E VA
fe— /N FHB IS, b KBS B T — /A AR R A FAR B o S E— 750
T A FAR B A R R T — A B

KR B.5 BN AR 2 BR&ABARA

FESES. 01751 XHEkFRIRED. A DOI. 10. 19907/j. 0490-6756. 2021. 041005

On the crossing periodic orbits of a piecewise linear Liénard-like
system with symmetric admissible foci

LUO Yan-Hong , CHEN Xing-Wu
(School of Mathematics, Sichuan University, Chengdu 610064, China)

Abstract: We investigate the crossing periodic orbits of a piecewise linear Liénard-like system with sym-
metric admissible foci. By reducing this system to a normal form, which has less parameters, and con-
structing the Poincaré maps of the left and right subsystems, we prove the existence of at least one
crossing periodic orbit, give a sufficient condition for the non-existence of crossing periodic orbits, and
provide an upper bound for the number of crossing periodic orbits under some conditions.
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1 Introduction

F (X)) =(F (X),F; (X)) =
A X+b i <0,

oY

Planar piecewise smooth differential systems
are used as mathematical models in many fields
such as power electronics'’ and feedback systems
in control systems'?'. Because of the non-smooth-
ness of vector fields, the qualitative analysis is
much more difficult than smooth systems even for

piecewise linear systems with one switching line

Wi AR 2020-11-24
E£WH: HRARFFAES(11471228)

1F<X%%R<Xxmcmﬂ>
ATX+bT, if 20,
where X=(x,y)"€R?, A® =(aj )are 2 X2 con-
stant matrices and b® = (bi ,by )Tare constant
vectors in R%.
As indicated in Ref. [3], System (1) has no
crossing periodic orbits when atbap, <0. Thus, we

assume that aiai; >0 in this paper. By Ref. [3],
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System (1) can be transformed into

T —1 0 ]
X*( 7), if x<20,
P D 0 a
g —1 —b .
N N X*( N ), if x>0
821 822 a
(2)
by
1 0 0
X— ap 1 X+ b (3)
ar ap a

where (T, D ,a".a b, giisg4sg5:) €RE
Clearly, the transformation (3) does not change
the discontinuity line. When g7; =0, we say that
System (2) is of Liénard-like canonical form as

defined in Ref. [4], i.e. ,

T —1 0 )
{ }X( ) if +=0,
S — D 0 a
gﬁ —1 —b )
. X*( . ), if x>0
821 0 a
(4)

It is not hard to check that both equilibria of sub-
systems in System (4) are foci if and only if

T #0, T *—4D <0, g #0,

g’ —4gn <0 (5
The focus of the left subsystem is admissible (re-
sp. virtual) if additionally a= <<0 (resp.a >0).
The focus of the right subsystem is admissible
(resp. virtual) if additionally a™ >0 (resp. a™ <<
0).

For System (4), the existence of two cross-
ing periodic orbits is proved in Ref. [3] when the
two foci are virtual and the existence of three
crossing periodic orbits is proved in Ref. [ 5] when
one of these two foci is admissible and the other is
virtual.

In this paper, we study the number of cross-
ing periodic orbits for System (4) having two ad-
missible foci. We reduce System (4) to a normal
form and state our main result in Section 2 and

give the proofs in Section 3.
2 Main results

System (4) has 7 parameters. In order to

simplify it, we firstly find a normal form with

less parameters. For convenience, we write T,
D as 2a »(a )* +(w )* with = >0, respec-
tively, and denote the eigenvalue by A" =¢a =+
iw~ for the left subsystem. Note that (5) holds
because the equilibria of subsystems in (4) are
both foci.

Theorem 2.1 System (4) having two foci is

equivalently transformed into

20 —1 0
(2 D) e
, 1462 0 a
X= 1 )
\L <a )X*( )9 if >0
B 0 0
(6)
by (x,y,0)>(x/w syst/w ),where
él,] ) B:—g2127 IO:=:TJ:7
5=, =9 0
w w
satisfying
ada 70, o’ —4£<<0 (8)

When there are two admissible foci, for Sys-
tem (4) we get an equivalent System (6), which
has 6 parameters a, 3, 0,8+ a,b. Thus System (6)
is regarded as a normal form of System (4). Ob-
serving that System (6) is invariant under
the change

(xsystsasPspsdsasb)=>(x, —y, —t, —a,

Bsps —8sa, —b),
we only consider 6>=0 in System (6). In the fol-
lowing, we consider the existence of crossing pe-
riodic orbits of System (6).

Theorem 2. 2 Assume that the two foci of
System (6) are admissible and symmetric with re-
spect to y-axis. The following statements hold;

(a) For the case da <0, System (6) has at
least one crossing periodic orbits if §* +1 —p=b=
03

(b) For the case da >0, System (6) has at
most two crossing periodic orbits and there exists
M >0 such that for all |§| >M System (6) has no
crossing periodic orbits.

In Theorem 2. 2, for the case da<<0, we give
a sufficient condition for the existence of crossing

periodic orbits. However, it is hard to get a con-
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dition for the non-existence of crossing periodic
orbits as we provide for the case o >0. Thus in
the end of this paper we give two examples for the
case da<<0 to exemplify the possibility of non-ex-
istence of crossing periodic orbits. On the other
hand, for the case o« >0 we provide an upper

bound for the number of crossing periodic orbits,

but we are not able to judge if it is reachable.

3 The proofs of the main results

Proof of Theorem 2. 1
(zsy)—>(2/w

By transformation
,y), System (2) having two foci

is transformed into

_ - 1 _
o\ [T —1]|— O 0 0
S TFA |l P TR
0 1/\D 0 0 1/\a
. 0 1
X= ) =
0\ (g —1)|— 0 0\ (b
L e e A [ F
0 1 g1 0 0 1 0 1 a
2a~ —w 0 .
e X—( 7), if <0,
w T 0 a
w
D)
g o B
+ x—| if 2>0
&2 0 a’ )
w
\
Further, by a time rescaling t—¢/w~ System (9) ar (10)
is changed into System (6) with new parameters Vi
defined in (7). By (5), new parameters in system where
(6) satisfy (8). [ a 28a
(z1 ’y")‘_<1 +62'1+6° )

In order to prove Theorem 2. 2, we need
some preliminaries. For the left subsystem in
(6), the solution satisfies (x(0),y(0)) =(0,y) is

of the form

is the coordinate of the unique equilibrium of the
left subsystem. For the right subsystem in (6),
the solution satisfying (x(0),y(0)) =(0,y,) is of

( x(z‘)) N < cost +osint —sint ) —xL N the form
=¢
y@®) A+6%)sint cost —osint/ (| y—.
A\ sinBt _ sinBr
(.r(t)) " cosBt +(a—A) B B — xR n XR an
:e . .
y(l) (Bz +(07A)2)51;#‘ COSBZ‘*(Q*A)SIEBZ‘ Yo TR VR

|
where Ai=q/2,B:=+|a* —4p| /2 and

ya ,a9+b@>
BB

is the coordinate of the unique equilibrium of the

(g 9yR)::(

right subsystem.
In the following, we introduce the Poincaré

map, which is our main tool in looking for period-

ic orbits, Clearly, the right subsystem in (6) has
a unique tangency point (0, b). Since the foci is
admissible, the orbit starting from this tangency
point intersects y-axis for the first time at a point
when A >0. Thus the orbit starting from (0, y,)
intersects y-axis for the first time at (0, y,) for

vy <<b. We denote the time by t and define a right

041005-3



% 58 &

W K FFIRCH RFF O

%A

Poincaré map Py as y; = Pr (y,) for all y, <b.
From (11), we obtain a parametric representation

of the right Poincaré map Py as

—A
yo:[)ﬁ—;“b;e : V(tR)BIRa

SiI’lB[R
g (12)
Ay
2 =Pr(y0) :bfe—sfflT;Bm
where 1z G(ETt ,ix ] and
— Y A
g (3= 1" (cosBr + 7 sinBt ) (13)

is defined in Ref. [6]. Here #x is the unique zero
of ¢ ()in(w/B, 27/B). Clearly, ¢, (£)is strictly
decreasing in(7/B,2n/B). We have ¢ (n/B) >0
and ¢ (27/B) <0 by calculation. Thus I is the
unique zero of ¢ () in (x/B,27/B). By y, <b we

have t; € (EK SIk .

When A <0, the orbit starting from this tan-
gency point intersects y-axis for the first time at a
point as the time is reversed. We denote the coor-
dinate of this point by (0, y,). Thus the orbit
starting from(0, y, ) intersects y-axis for the first
time at (0,y,) for y, <y,. We denote the time by
tg and define a right Poincaré map Py as y; =
Pr(yo)for all y,<y,. From (11) we obtain a par-

ametric representation of the right Poincaré map
Py as (12), where t; € (ETC’Z‘R] since Pr(y,) =0

and ¢+ (¢) is defined in (13). Here Zx is the u-
nique zero of ¢ () in (n/B,27/B) for A>0.
From (12), we get

_¢1+([R)7 Yo —b

Pr'(yo) = ot Priyo) 7beZA’R <0
14)
) sk —gsinBzR
Pr (o) IZB‘x;g(lJr?) Palon) ) R
(15)
Since
sign (BsinhAtr —AsinBiy ) =sign A,
it follows from (15) that
sign Pg(y,) =sign A (16>

Lemma 3.1 (a) The reverse map P! of Py

has the asymptote
At (y) = —e By +(1+e B (b +2Azr)

satisfying sign (Pr'(y) —Ag'(y)) =sign A.

(b) If « >0, then Py is a surjection from
(—eoo,b] to [y, +o0), where 3, ==y, (Ig).

(¢c) If @ <0, then Py is a surjection from
(=<0, ] to [bs +o0), where ¥, =y, (Ig).

Proof By (12), the reverse Pi' of Py takes

a parametric form

Ar
, =bh *MBIR ,

Y2 sinBig
—Ar
Pl (yy) =p+ & g,
sinBtg
Then

—1
lim T2 (02)

yyrteo Y2

—A
b Jrg"b;e “y Ul )Bx

: R
I sinBig _ auB
1m A e ’
€ R (g )B
B XL R
sinBtg

and
lim [Pe’ () —(—e ")y, ]=

—At
lim b+ & dp o

sinBtg

tp—>(x/B)

e AB (() *QSMBLIQ)BIR ) =
sinBtg
(1+e M™BY(b+2Axp).
Proposition 3.2 Assume that x; <<0. Then
the following statements are true for the left
Poincaré map P; ;

(a) If §#0, then P, is defined by
—a &
€’ S(tl‘)l'L» PL(y):—e - 75(ZL)1‘1

YT sin L sin #.
for m<<r; <y being ¢ ;) (7L) =03

(b) If §<<0, then we define y =y (#.) >0,
and we have P, (3) =0,

P, :[y,o0)—>(—co,0] and 1@ Pl (y) =

¥y

— ooy
’

(o) If §>0, then we define 3, =y, (2, )<<0,
and we have P (0) =73, ,
P :[0,o0)—>(—oo,% ] and limPi(y) =0;

y>0"

(d) If 40, then we have P} (y) <0 for all y
where map P, is defined,
lirﬁ»Pi(y) = —e™,sign P] (y) = —sign 6.

Finally, we define the Poincaré map P as the

composition P = Py ° P; , where the left Poincaré
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map P; is defined in Ref. [5]. From Ref. [5], the
Poincaré map P is well defined for y=vyp, where
yp =2y for §<<0 and yp =0 for §>0. By the proof

of Lemma 3. 1,

lim Px(y) = lim Px(y) = —¢ B,
y=—oo s
We have
limP} (y) = —e,
yoo
Then

limP’(y) =lim(PkP,(y)) « P,/ (y) =
y—>oo Yoo

e(A,/B t 8)7(.

If 3 is a fixed point of Poincaré map P, then
P(3) =Pr(P.(3)) =y.and so P, (3) =Px' ().
Hence the existence of crossing periodic orbits is
equivalent to the existence of zeroes of the func-
tion

W(y)=Pr'(y) —P.(y) an
well defined when both y=yp and y=yp, , where
yp1i=b for a<<0 and yp*= 3, for ¢ >0.

For y#3y and y#b,

v (y) = —P. (y), ¥ (y) =

1
(Pr°PrH(y)
(Pk e Pr)(y)
(a) If ¥(3) =0, then P(3) =

—P,"(y (18)

Lemma 3. 3
v. Furthermore,
C..= lir‘r{\If/(y) = —¢ B 4 oin 19

(b) If SA>0, y#73 and y+#b, then we have
sign ¥’ (y) =sign(A +§ and so function ¥ has at
most two zeroes.

Proof If ¥ (3) =0, then it directly follows
that P(y) =y and

lim ¥ (y) = lim —P (y) =

1
ytco vt (PR e Pr) ()
e AWB | dn
By (14) (16) and Ref. [5], we have sign P| (y) =
—sign &, sign Pi(y) =sign A, and Pk (y) <<0.
Associated with (18), (b) holds.
Lemma 3.4 When §<<0, A<0, =0, Sys-
tem (6) with (8) has no crossing periodic orbits.
Proof A crossing periodic orbit " has exact-
ly two points at the y-axis, namely, (0, y;) and
(0,yy) with y, <0<<b<<yy =y, Th, where h >0.
By removing the two crossing points, we define
the left open arc Iy =T N {(x, y): 2 <0}, the
right open arc I'x == T N{(x,3) :2>0},and the o-

riented segments

I, ={(x,y):x=0,y=

1 */u)yz‘ +/Jyu ’Ogy <1},
I ={(x,y):x=0,y=
pye = yu, 0<p<1}.

Since I' UI, is a closed Jordan curve, we define
its interior Q. *=1int{IL UI.} and ¢ = area(Q,).
Analogously, we define Qg = int{Ix U Iz} and
o *=area (Qg). According to Proposition 3. 6 of
Ref. [3], if System (6) with (8) has a crossing
periodic orbit passing through the points (0, y; )
and (0,y; +h), then we have

200~ +2As" +bh =0 (20)
Since (20) cannot be fulfilled when §<<0, A <0,
b=0, System (6) with (8) has no crossing peri-
odic orbits.

Proof of Theorem 2, 2 The two foci of the
left and right subsystems of (6) lie at (xr, y.)
and (xg,.yg), defined below (10) and (11), re-
spectively. Since the two foci of System (6) is ad-
missible, we get a<<0 and p>0. Note that 3~0 by
(8). Because of the symmetry of these two ad-
missible foci with respect to y-axis, we get

a/(1+6*) = —p/Bs 28a/(1+6%) =ap/B+0.
Then

p="Pa/(1+6*), b=(20+a)a/(1+8%) (21)

For the case §a<<0,we first consider the case
0<<0,¢>0. By (10), (12), Lemma 3.1 (b) and

Proposition 3. 2 (b), we can obtain that y =ae 71

sin 2.y, :b—(p/B)eA?R sin Big.

If o> +1—p=06=0, then B=1,6=—A and
3, =ae 7k sin Ig. Since 7x is the unique zero of D
(t) in (m,27) ,from (13) and Proposition 3. 2 (a)
we get Iz =1; , which implies that y =3,. By (17)
we have ¥ (3) =Pr' (3) — P, (3) =0. That is,
System (6) has at least one crossing periodic or-
bits. For the case § >0,a <<0, by (10), (12),
Lemma 3.1 (¢) and Proposition 3.2 (c¢), we get

3o =b+(p/B)e Y& sin Big
and 3, = —ae’L sin b

If 9> +1—pB=0=0, then B=1,6=—A and
Vo= —ae”r sin 7. Similarly to the case §<<0,a >
0,by (13) and Proposition 3. 2 (a), we get Iz =
i1 »which implies that 3, =3,. By (17) we get
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W(0) =Pr'(0) —P.(0) =3, —3 =0,
which means that system (6) has at least one
crossing periodic orbits. (a) holds.

For the case §a >0, since 6=0, we have §<<0,
«<<0 by (21). From Lemma 3. 4, we know that
W(y)#0 for b =0, so by continuity we get
W(y) #0 for 0<<h<1. Clearly, b—>0"as|s|— + <o
by (21). That is, there exists M >0 such that for
all |8] >M we have 0 <6< 1. Thus System (6)
has no crossing periodic orbits. Since §<C0,a<0,
we have C.. <<0 and ¥ (y) <0 by (19) and Lem-
ma 3. 3(b), which means that the function ¥ has
at most two zeroes. Thus System (6) has at most
two crossing periodic orbits. (b) holds. The
proof is end.

In Theorem 2. 2, we prove the existence of at
least one crossing periodic orbits for System (6).
The non-existence of crossing periodic orbits for
some systems is proved for the case da=>0. In the
following, for the case da<<0 we provide two ex-
amples to show that there may be no crossing pe-
riodic orbits no matter H=0 or not.

Example 3.5 lLeta=1,5=5/16,p=5/32,
§=—1l,a=—1,b=1/2 in System (6), i.e. ,

(2 x (). iteso.

X= 21 (11 179 (22)
<5ﬂ6 o)X_'<5/3/2>’if"'>O

It is easy to check that System (22) has two
admissible foci at ( —1/2, 1) and (1/2, 1). Since
5<<0,by Proposition 3. 2 (b) we obtain

P .(y) =P .(y) —P (3=

Pl @®OG—»<—c " (y—»=G1), £EEG.y.
By Lemma 3.1 (a), the intersection y, of Ag' of
the right Poincaré map with the y-axis is given by
ya =1 +eB) (b+2Azg) =1 +e™.
Since the slope of the Ag! is greater than the
slope of the G(y), and

yy=1+e">1—¢e'cos 1, =
—e't sin#, =37, € (1270

we have Ag' (y) >G(y). Associated with Lemma
3.1 (a),

Pl () =AM (y) >G(y) >P, (y).
Hence ¥(y) >0 and System (22) has no crossing
periodic orbits.

Example 3.6 Let « =2, §=10/9,p=5/9,
0=—1,a=-—1,0=0 in System (6), i.e. ,

G )
1\ (15?9 01>X'<5S9>’

Similarly to Example 3.5, we can prove that

if x<<0,

if x>0.

there is no crossing periodic orbits by similar a-

nalysis. Thus we omit its proof here.
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