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Abstract: This paper investigates the properties of a sequential maximum likelihood estimator of the un-

known drift parameter for a Logistic diffusion process. We derive the explicit formulas for the sequential

estimator and its mean squared error. The estimator is proved to be closed, unbiased, uniformly normal-

ly distributed and strongly consistent. Finally, a numerical experiment is provided to illustrate our theo-

ry.
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1 Introduction

In this paper, we study a sequential maxi-
mum likelihood estimator (SMLE) of the un-
known drift parameter for the following Logistic
diffusion process

dX, =aX, (1 —pX)dt +6 X,dW,,

X, =x,>0 ()
where {W,,t=0} is a standard Wiener process on
a complete filtered probability space (Q, F, (F,,
t=0),P) with the filtration (F,,t=0) satisfying

the usual conditions. Suppose X (#) represents a
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population density at time z. The intrinsic growth
rate ¢ is the unknown parameter to be estimated
on the basis of continuous observation of the
process X up to a certain predetermined level of
precision. The known parameter g is called the
carrying capacity of the environment and usually
represents the maximum population that can be
supported by the resources of the environment,
The known parameter ¢ is the noise intensity
which represents the effect of the noise on the dy-
namics of X.

The Logistic diffusion process is useful for
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modeling the population systems under environ-
mental noise, which have recently been studied by

(1], if the noise is

many authors However,
sufficiently large then the population will become
extinct. Therefore, it is reasonable to assume
that >0, 8>0, ¢* <2a.

In this paper, we use the SMLE to estimate
the unknown parameter of Logistic diffusion
process. Sequential maximum likelihood estima-
tion in discrete time has been studied in Lai and
Siegmund'™, and this type of sampling plan dates
back to Anscombe!”™. In continuous time proces-
ses, SMLE was first studied by Novikov'®'. He
proved the SMLE of the drift parameter for a lin-
ear stochastic differential equation is unbiased,
normally distributed and effective, Since then this
method has been applied to estimate the drift pa-
rameter of other kinds of stochastic differential e-
quations*!”, To the best of our knowledge, the
probelm has not been studied for the Logistic dif-
fusion process. In this paper, we are concerned
with this topic.

The aim of this paper is to study the statisti-
cal inference for the Logistic diffusion process X
given by Eq. (1). More precisely, we would esti-
mate the unknown parameter o based on a contin-
uous observation of the state process X up to a
certain predetermined level of precision by propo-
sing to use an SMLE. We prove that the SMLE
associated with the unknown parameter ¢ is
closed, unbiased, normally distributed and
strongly consistent. However, it is very difficult
to obtain the upper bound of the average observa-
tion time by the similar method adopted by Lee et
al.""", To overcome this difficulty, a useful com-
puting method is proposed in this paper, based on
the upper bound of Ea[1/X,].

The rest of the paper is organized as follows.
In Section 2, we introduce a sequential estimation
plan for the Logistic diffusion process, and present
the main theoretical results in Theorems 2. 1~2. 3.

Section 3 is devoted to numerical studies which il-

lustrate the efficiency of the proposed estimator.

2 Sequential maximum likelihood es-
timation

In this section, we use (r(H) . ) to esti-
mate the unknown drift parameter ¢ in Eq. (1).
Here, r (H) is defined to be a stopping time
which is the first time such that the observed
Fisher informatin of the Logistic diffusion process
exceeds the previously determined level H and
@.p 1s a sequential estimator of the drift parame-
ter ¢ tracking at (H). More specifically, the ob-

servation stopping time r(H) is defined to be
c(H) = inf{ > ozj; (1-pX)%ds — H|

(2)
where the predetermined level of precision 0 <<H <<
oo, which is F,-measurable''. In the following
theorem we enumerate the fundamental properties
of this sequential estimation plan(z(H) ,a.p ).

Theorem 2. 1

a.an ) be the sequential estimation plan with the

Let the random pair (z(H),

observation stopping timer ( H) defined as Eq.
(2). Then we obtain the SMLE of the unknown

drift parametera given by

(H) 1 — X{
aan = +(]7 R x) (3)

Moreover, we have

(i) The sequential estimator is unbiased, i. e. ,
for each H€ (0, =),

E, (axm ) =as Va€(0,0),
where E, denotes the expectation operator corre-

sponding to the probability measure P, ;
(i1) For each H >0 fixed, it holds that

MNMO,D’

where N(0,1) denotes the standard normal distri-

bution. In particular, we have

E, (@.m —a)? :%;

(iii) The sequential estimator is strongly
consistent. Namely

A —>as P —a. s.
when H—co,

Proof We first show that the F.; -measur-

able random variable ) is indeed the SMLE as
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follows. Let @,a be any two real numbers. Sup-
and X,
diffusion processes

dX!=0X!(1—pX!)dt +¢ X!dW,

pose that X, satisfy the Logistic

and

dXe =a X¢ (1 —pX:)dt +o XedW,,
Then the
Pl x and Péy.x corresponding to the processes
{X0.0<t<<z(HD)} and {X¢:0<t<<¢(H)} respec-

tively, are equivalent and their Radon-Nikodym
[12]

respectively. probability measures

derivative is given by

dPm.x _ {a *QJT(PD 1—pX, o
dPln.x IS P ot Jo X, dX,
N2 (D
(“276‘2)]0 (1—5X,>2d1:} (4)

where F¥y;, is the natural filtration generated by
{X¢:.0<t<<r(H)}. Then, by solving the equation

d/, dPen.x _
da(a 1og de(H),X ) 0

we obtain the SMLE given by

R 1 «(H) 1 _ X/

axan = E(Jo j(iLer) (5
To verify (i), it is enough notice that for any T >
0

a
F:—(H)

T

P =T =P ([ —pX)d < H)
and therefore, we have

PG = =) = P,(| (1 -pX)d < H).
Thus it suffices to show

S e\

P a—pxotar =) =1,
which is to say that

.

J (1 =BX)idt— = ,a.s. . T—>co,

0
Since o >>0. 56°, the Logistic diffusion process X

given by Eq. (1) has a unique stationary distribu-
tion p( + ) on (0, <) (see Rel. [3, Theorem 3.

2. By the ergodic theorem, we have
T -

.1 i
lim [ (14X = [ ()t >0,

T—>co

0 0

which implies that
P a-pxod =) =1,
0

The proof of (ii) follows directly from noting that

«(H) li X[
o B )
i «(H) 1 _ X[ B
H{JO ix, X, (1 —pX)di +
X.dw, 7} = L FH) 1 - 8X,)%de +
(P4 " t]}* H|:0( 0 ( B t) t

armu—px,)dw,]:

0

o «(H)
a +EJO (1—8X,)dW,,

«(H)
and the fact that the processj (1 —=pX)HdW,is
0
a Wiener process with variance H>0 (see Relf.
[13, Theorem 7. 14 on page 234]). Hence

Ea (d\T(H) ) -

Ea<a+%ﬁ(m(1 ~BX)dW, ) = a.

Next, the random variable

“r(H)
" - pxoaw, ~ N

0

«CHD
sinceJ (1 —BX,)*dt = H, which proves that

0

@q\xo,l) for each H>0 fixed, i. e. ,

(ii1) is valid.
Lastly, the conclusion (iv) follows from

«(H)
PLIJ (1 —=BX,H)dW, >0, as H—>c<> by the law
0

of large number.
In the next theorem we get the upper and
lower bounds of the average observation time un-

der some assumptions.

Theorem 2.2 Suppose that 0<<x, <%. Then

the average observation time E,[z(H) ] of the se-
quential estimation plan satisfies

E[<«(H)]=

f[l —% FE.(na ey taH]  (6)

In the case a >¢*, the following upper bound esti-

mate holds for E,[ (H) ]

E,[«(H)]<
U—Zz[a—i% JrEﬂ<lr1 xo —fxo +Iio> JrozH} D)

Proof By 1t6 formula, we have

n X, —px, - | LPXax, 24
0 s
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(Inxy —Bxy) :J; %{%[axx(l —

2
BX)ds +o X, dW, ] —%z + (In 2y —fxy) =
o a—pxds o] -pxoaw ]~

2
%z + (Inzy —Bxo) (8)
Setting t =7(H) in Eq. (8), we get

2
%T(H) =—[In X, —BX.m]+
«(H)
(In x, *on)Jr[aJ (1 —=BX)%ds +
0

J‘T(”)(l Cex )dW}>
¢ 0 BA. s
(1 =X ]+ (Inxg —Bao)+eH +

«(H)
JJO (1 =X HdW, (9)
Since <%, by Lemm 2. 3 of Jiang ez al. ",
we have
EX gi (10)
B
Hence,
2
%Eir(H)]?
1 7% +E, (Inx *ﬂl'o ) taH.

Eq. (6) holds.
To deduce Eq. (7), notice that by Eq. (9) we
have

o 1
2T(H)<[8XT(H)+<XT<H) 1)+QH+

«(H)
(Inx, *IBIO)JFGJ (1 =BXHdW,

0

an

Finally, since « =", we obtain an upper bound

by the Lemma 2. 2 of Jiang et al. "
E [ 1 ]gi +4a&’

“‘LXewmd 20 a6

from which the desired result Eq. (7) follows u-
sing Eq. (10) and Eq. (11).

Now a result about the efficiency of the

SMLE can be obtained by the following theorem.
Theorem 2. 3 Let the

(z(H),g.) be an arbitrary unbiased estimation

sequential plan

plan for the Logistic diffusion process {X,} with

the unknown parameter o € (0, ©©), namely,

E[X(d\f):(ly for allaE(O,OO) (12)
Suppose also that 0 << E, (JT (1 —BX, )st> < oo,
0

Then
Var,(a.) = E, (a; —a)® =
e (13)
_ 2 9.
E(J0 (1-BX)%ds)
Proof The proof is adapted from that of

Theorem 7. 22 in Ref. [13]. Differentiating both
sides of Eq. (12) with respect to « yields that

1 (*1-=8X, B
Eﬂ{ar[o'z Jo X, d X,
N 2 _
4 JO (1-8X,) dz}} 1
Then, since

E UO %{iLdeX, —aJ: (1=pX,)de]| =

{J %{@[ax,u —BX)d o X,dW, ]

0

E

aJo O*BX,)%} :E{[O‘Jo (1—BX)%d +
Fa s v
E{UJ:(l —pX,)dW,]:o,

it follows that

Ef@ w4 [ 15X, -

ljo (1 —ﬁX,)Zdz]}: 1.

namely:7
Ea{wf —wUZ %(Ilf—&dx, -
QJO (1—5X,)2dz]}:0«2 (14

Applying Cauchy-Schwarz inequality in Eq. (14),

we obtain

& <E, (6 —a) » EU 1-BX ! Xigx, —
0 t

aJO a —ﬁX[)ZdtT

E, [GJO (1 —,@XJdeT -

=FE, (& —a)’ -

o’ E, (a: —a)’ » EUO (1 —ﬁX,)Zdz].
Therefore, Eq. (13) holds.

A sequential estimator g is said to be

efficient in the Mean Square Error (MSE) sense if
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Eq. (13) becomes an equality for all ¢ € (0, o),
Since property (iii) of Theorem 2. 1 holds for the
SMLE @, for all « € (0, c0), by the above defi-
nition, the SMLE &, is efficient in the MSE

sense.

3 Numerical illustrations

In this section, we present some numerical
illustrations to exhibit the performance of the
SMLE g.y given by Theorem 2. 1. We first sim-
ulate the sample paths of the Logistic diffusion
process Eq. (1) by using the Monte Carlo method
with the classic Euler-Maruyama scheme. In each
numerical experiment, we generate 10° sample
paths with step size At =107%. We examine the
following four different settings, respectively:

(a) seta=2, B=1, 6=1.5;

(b) seta=4, =1, 6=1.5;

(o) seta=4, =1, 6=1.5;

(d) seta=2, p=0.5, ¢=1.5.

Tab.1 The ME of the SMLE ¢y, the MSE of the

SMLE Ar(H) and the SD Of [(Yr(”) 70(]2

E (D] E,la:an —al ELawm —al? SD of [awn —a

a=2, =1, 6=1.5

H=10 18.7709 —0.0004  0.2224 0.309 9
H=50 88.0770 —0.0057  0.043 9 0.063 6
H=100 175.2496 —0.0017  0.024 2 0.030 9
=4, =1, s=15

H=10 34.8529  0.000 1 0.222 4 0.315 8
H=50 172.6195 0.0015 0. 047 3 0.072 4
H=100 345.0851 0.007 5 0.020 2 0.029 3
a=1, =0.5, 6=0.75

H=10 359393 —0.0153  0.0541 0.0719
H=50 176.4838 —0.0061  0.0118 0.016 5
H=100 351.7963 —0.0062  0.005 6 0.008 2
=2, 3=0.5, s=1.5

H=10 18.4140 —0.0135  0.2370 0.349 0
H=50 87.7941 —0.0098  0.046 8 0.066 3
H=100 174.7470 —0.0033  0.0214 0.0315

Tab. 1 reports some statistics related to the

SMLE @.m»s which  include the Mean Error

(ME) E,[awm —a], the MSEE,[awm —al*>
and the Standard Deviation (SD) of

[@ —a]?. The mean time E,[7(H) ] needed to
achieve three different H-levels are also reported.
Notice also that the mean observation time E,[ ¢
(H) ], which is approximated from Monte Carlo

simulation, shows a linear growth in H.

2.5
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| —Theory
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Fig. 1 The star points are the MSE plot for the SMLE
a.cmn » and the solid line is the corresponding theo-
retical MSE of the SMLE. The SMLE shows per-
formance well

0.04 — : : , ,

1
0.03 I
n
o2 p | H I
N
I |
ootk 71 T J A
PV N AN
g o LI | Y
= RERIIRW \ /Y
~0.01 “ | “\ H‘ Ve \/
\‘ “ H‘ | 4
_0.02+ | I
002t || ]‘
|/
003 |/
|/
L]
~0.04 , . ) | , , | | |
0 5 10 15 20 25 30 35 40 45 5

H

Fig. 2 Bias plot for the SMLE g,y against H

Figs. 1, 2 and 3 are plotted under the setting

(a). Fig. 1 displays the MSE (the star points) of

the SMLE @, against H >0, The solid line in

this plot is the theoretical MSE curve of the
62

SMLE, i.e. “H We observe that they almost co-

incide. Fig. 2 shows the bias of the SMLE (from

Theorem 2. 1 (iii)), we have the bias a.m —a~

N(Ov%). Fig. 3 depicts the histogram of the sta-

, with H=10 and H =50.

tistic

VH (a.m —a)
o
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The dashed curve is the standard normal density. VH (e —a) NG
We find that the SMLE works quite well (from o o
Theorem 2. 1 (iii)), we have
047 =10 — 0.45 H=50 —
035 1
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Fig. 3 Histogram of

standard normal density
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