2023 %5 A
60 B3

vl K FRCE RFAF R

Journal of Sichuan University (Natural Science Edition)

May 2023
Vol. 60 No. 3

2

Bloch 2I=2 j&]_ EHJ Toeplitz BF k57 # B S H % B

BOOKYE, E)REN, ERE, KZN
(L MR S BRRERE 1M 5100065 2. i ERR:BE Ay BaBFSE T, dL5 100101

H OE. 4k C PR B, L6 E Borel M E. AL ££ 43 T Bloch & % i B«(B,) £
w1 A58 Toeplitz BF To 69 A Rtk Fb, P 0<a<<1. % o>1 B, KA A5 K5
b T BB, R L6 F A B 6 B

X817 Toeplitz HF ;94 H-54&; Bloch & = g

RESES. 0177 XHEkFRIZAED. A DOI. 10. 19907/j. 0490-6756. 2023. 031001

On the characterization of Toeplitz operators and fractional
derivatives on Bloch-type space

JIA Ce'?, CAO Guang-Fu', WANG Xiao-Feng', ZHANG Yi-Yuan'
(1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;

2. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China)

Abstract: Let x4 be the positive Borel measure on the unit ball B, of C'. We in this paper characterize the
measure ¢ on B, for which the Toeplitz operator T% is bounded or compact on the Bloch-type spaces B

(B,), where 0<<¢<<1. Additionlly, we also give a characterization for the functions on B*(B,) in terms

of fractional derivatives, where ¢>1.

Keywords: Toeplitz operator; Fractional derivative; Bloch-type space

(2010 MSC 30H30, 47B35, 26A33)

1 Introduction

Let C" be the complex Euclidean space of di-
mension n and B, the unit ball of C". Fora>—1,
let dv, () =C, (1—|z|?)*dv(z) be the weighted

volume measure, where ¢ _TtatD is a nor-
) ’ “ nl T+t —

malizing constant such that v, (B,) =1. For « >
—1 and 0 <<p <<=, the weighted Bergman space
AP (B) consists of all holomorphic functions f on
B, such that

£ ey =[| 1@ \pdmz)]“ < oo,

n

Wi A . 2021-01-23

When the weight ¢ =0, we simply write A?” (B,)
for A? (B,). These are the standard Bergman
spaces. When p=2, A2(B) is a Hilbert space. It
is well known that the reproducing kernel of A?
(B) is given by

Ke(z,w) =1/(1—{z,w))" 'e,

n
where {z,w) = Eziz@i for z=(z15*y2,), w=
i=1

(wys***yw,). The Bergman projection P, is the

orthogonal projection from L* (B,, dv,) onto
AZ(B) defined by
P.() () =f5 K (z,w) f(w)dv, (w),
fel'B,,dv,).
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The projection P, naturally extends to an integral
operator on L' (B, ,dv,), see Ref. [1, Theorem
2.117.

For ¢>—1, we also define the general Berg-

man projection of the measure p as

ago@>:%thmwM1—huhwmwx

For a measure ;2 on B, and « >0, we define a To-
eplitz operator as

fw) A —| w [H)!
(1 —(zyw))"™

Ti(H () = cr1J. dp(w)

n

f e L' @B,.dv,).
Thus T4 () (2) =P, 1 () (2), where du,(2) =
f()du(2). For a0, the a-Bloch space B*(B,) ,
also known as the Bloch-type space, consists ex-
actly of holomorphic functions f on B, such that
I f 1l g ) :zseujg)(l — 2P| V()| <oo,

_(9f af
where Vf(2) (921(2)""32,,(2”'

The Bloch-type space B*(B,) becomes a Ba-

nach space when equipped with the norm
I fllEe)=|,0)] +§ng(1*|2|2)‘1 V().

It is well known that the above norm is equivalent
to | £CO) | + sup (A—1z[®*|Rf(2) |, where
2€B,

n

Rf(2) = 2&:1 2 %(z) is the radial derivative of

f at z.

Let H(B,) be the holomorphic functions on
B,, for any two real parameters y and ¢ such that
neither n+7y nor n+y -+t is a negative integer, we

define an invertible fractional differential operator
R*.H (B, — H (B, as follows. If f(2) =

ka(z) is the homogeneous expansion of
k=0

f, then
R f(2) =
AT +1+ T +1+k+y+0D
AT+ 1l+y+0T+1+k+p
The inverse of R”*, denoted by R,,, is given by
R, . f(2) =

AT +1+y+0OT+1+k+y)
T +1+PTn+1+k+y+0

Toeplitz operators have been extensively studied

S (2.

on many spaces of analytic functions, see, for in-

-

Jr (2.

stance, Refs. [1-18]. A fundamental problem is
to determine conditions on the measure, necessa-
ry or sufficient, for the corresponding Toeplitz
operator to be either bounded or compact. There
is also some previous work on the characterization
of bounded and compact Toeplitz operators T on
a-Bloch spaces. In Ref. [14], the authors have
completely characterized complex measure ;1 on
the unit disk I under some restricted conditions
for which T% is bounded or compact on Bloch-type
spaces B*(D) with 0<<q<<<e. In Ref. [13], due
to the limitation of technique in Ref. [16, Theo-
rem 2], the authors have only characterized the
positive Borel measure p on B, such that T% is
bounded or compact on B*(B,) with 1<<¢<<2. In
this paper, we will use another different tech-
nique to characterize the positive Borel measure p
on B, for which the Toeplitz operator T9 is
bounded or compact on B* (B,) with 0 <q <1,
which is an extension of Ref. [13]. Besides, we
also give a characterization of functions on B*(B,)
in terms of fractional derivatives and its module
with ¢ >1.

Our main results about the boundedness or
compactness of Toeplitz operators T on B*(B,)
with 0<<¢ <{1 are given in Sections 3 and 4, and
the main results about characterization of func-
tions on B*(B,) in terms of fractional derivatives

and its module with ¢>1 are shown in Section 5.

2 Preliminaries

For weB,\ {0}, the automorphism mapping
¢.:B,—~>C" is given by

w—P,(2) —vV1—|w|*Q.(2)

1—(z,w

@o(2) =

where P, is the orthogonal projection from C, on-
to the one dimensional subspace [ w ] generated by
w, and Q, is the orthogonal projection from C,
onto C, —[w] defined by Q. =1 —P,. More in-
formation about the mapping ¢. is described in
section 2. 2 of Ref. [11] or section 1. 2 of Ref.

[1], where we can find the following identity
1—|wl|®

11—z, w) D

1— (g (2) sw) =

031001-2
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In Ref. [3, Lemma 2. 1], we can find the ine-
quality
~2d-— [w]®)
| gDu(Z)| ‘1_<Z,'LU>| (2)
Lemma 2. 1" For any ¢« > —1 and z €B,,
we have
2 21— |wl|?)
e A s sy

if f is a holomorphic function on B, with

I

n

| f(w) | do(w) <+ oo,

where dv is the normalized volume measure on B,,.
Lemma 2. 2tV

Then the integrals

Suppose ¢ is real and > —1.

_ ds (O k
I.(2) L 1 (g | sz € B,
and
-] w [»)'dv(w)
o -], Gl o,

have the following asymptotic properties:
(1) If ¢<€0, then I, and J.,, are both bounded
in B, ;
() If ¢ =
1

1*|z|2"z|_>] ;

0, then I. (2) ~J., (2) ~log

(i) If ¢ > 0, then I, (2)
A—]z|H) ", |z|—1".

Lemma 2.3/ Let 0<<¢<<2, B8 be any real
number satisfying the following properties:

(1) O<B<a if 0<<a<<1;

(i) 0<B<1if ¢=1;

(i) « —1<p<1 if 1<<a=<2.
Then a holomorphic function f € B*(B,) if and
only if

Fﬁ(f): sup (1—

| f () f(w)\

|z —w]

~J. () ~

P |w|H?

Moreover, for any « and g satisfying above condi-
tions, the following two semi-norms sup.es
(1—1[z])*|Vf(2)| and F3(f) are equivalent.

Lemma 2. 4%/ Suppose that 0 <q <<1. If
f€B(B,), then

| f()] <

Lemma 2.5 For any z,w €B,, the follow-

H I @) 2E€B,.

ing estimate holds:

lw—2| <V2|1—(z,w)].

Proof According to inequality (2), we have

—2d—|w|®
et TS

The change of variable u =g, (2) yields

2(1*\w| )

This together with (1) gives the desired result.

lw—z[*<<

3 Bounded Toeplitz operators

In this section, we are going to characterize
bounded Toeplitz operators on B*(B,) for 0 <<a<<
1. To this end, for a positive measure x on B, and

—p>0, we call 4 satisfies the condition S, if

Sep() () = (1 —| =

J (1 —] w |5
B

1 — (w, Z>‘u+rl /2

In fact, such a positive measure 4 satisfying the

Y

d)a(w) < oo,

n

condition S, does exist and there are many.
Next, we will give an example under the assump-
tion that « —3>0.

Example 3.1 Let

du(w) =1 = [w[*)"do(w) ,
where w€B, and y>0. If y=1/2 and >0, or
y>B+1/2, then S, ;(z) (2) <<oo for all z €B,.

Proof we have

Sep(p) () = (1 —| 2 [®)f .

o |2 ye Bty
J]B (1 ‘ = | ) lrhr‘l,’?dv(uy) -

n 11— <wvz>
a1—|=z]*
(1 —| w 2)(1*[)’*]‘?7
Jm 1— <w,z|> Jl‘rﬁwrk&mx’z do(w).

If y=1/2 and >0, then by (iii) of Lemma 2. 2,
we have
Sep() () = (1 —| =
IS
If p—y+1/2<0, that is, y>B+1/2, then by (1)
of Lemma 2. 2, we get

J (17‘w|2)a{j‘?~1+y
B

1 — <w’z> ntlta—p—1+trtp—rtl/2

hence S, ;(p) (2) <<o for all z €B,.
Theorem 3.2 et 0<<¢<<1 and p be the posi-

tive Borel measure on B,. If x satisfies the condi-

tion S, ; then

du(w) < oo,

031001-3
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Ses(p)(z) = (1 —| = [*)P feA@B,).g € B(B,).
|y, |2Yya gl «
J 4 —| w| )m[ﬂ/z du(w) < o In order to prove the boundedness of T, we need
B, 1 - <w»z> to ShOW
is bounded on B* (B,) if and only if P, ; () € \ (fsTa(g))e | <C | fla ®,) I gHB"(]B”)
B (B,). for any f€A'(B,) and g € B*(B,).
Proof It can be seen from Theorem 7. 6 of Applying Fubini’s Theorem and the reprodu-

Ref. [1] that (A'(B,))* =B*(B,) under the in- cing property, we obtain

tegral pairing

Frgdun :J.B F( 2@ —| 2 du(2),

(T :L‘MJB F() Tl (1 —| 2 [H du(z) =

o], F@an |, g A=l D™ ) (1~ 2 |57 dote) =
crlJ.B”f(w) 2@ (1 —| w D du(w) =
c-ﬁjmylpa(fgxwm —| w0 | ) +
Cﬁjmn(l PO (1 —| w [ dued AT, + 1,
where

f(z) g(z) (1 7‘ P4 |2)ad7}(z) _

(1 — <.w,z> )71—H+n
[ (glw) —g(@)f) A —| z[H"
LHJJB (1 —Cw,z))rithe du(2).

Choosing B = 0 such that « =>0, by Lemmas 2. 3 and 2. 5, we get

(gw) —g(x) A —| = [")* A —|wl|[)! | ‘7
JE”JB, (1 — (w,zy )" e dv(2)dpl(w) | =

(I —P)(f2)(w) = fw) g(w) —CJB

| I, | = Cp1Cq

— g (1 —|w )
_— (15?%@)7113' e do(z) | <

JE ) 1 —| = \Z)aJB (g(w)

| w—z|

core| 1 1A 19 Qe | |y LG —E |

A—]w|[H " w—z|
‘1 — (w,2) ntlta

du(w)du(2).

Since 4 satisfies the condition S, z, hence |L|<C | f lalw,) g [l #a).

Next, we consider I,. By Fubini’s Theorem, we have

I = QHJE P.(fg) () (1 —| w | e =

CFIJ‘B”CQJB” f(z) g(z) (1 7‘ < |2)ad-v(z) (1 7| w |2)r1d#<w) —

(1 —(w,z))re

" . 2 Ya—1
LHCQJB £ g(z)JB <§1—<wa‘> )),,Hﬁd,l(wm —| 2 |B)edu(a).

031001-4
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Let Conversely, if T4 is bounded on B* (B,),

A —| wl|H!
B, (1 — (z,w))

Q) = duCw).

Then we have
I = CJB @ g@Q W (A | = |Mdue.

By some elementary calculation, we obtain the

following relation between Q,(z) and P, (z0):
Q () (2) =P, (1) () +#1RPFI () (2.

Since g(z) and P, | () belong to B*(B,), by
Lemma 2. 4, there exist constant C, and C, satis-
fying the following inequalities, respectively, |g
(2) ‘ <C1 H g(z) ”B“(B”)a | Prl (;z) ‘ <C2
“ Py () H B*(B,) Then
A= 2[)g Q. (W (]| =
[ (1= =2[*)g(DP, 1 () (2) +

() .
B A [2RP 1 (0 ()| <

A=z (g | * [Pea G| +
1
m‘g(Z) [ |Prl(/1) | B, <

C,C, | g(z) [ B*(B,) [ P (/1) l B*(B,) +
L@ sy 1P (o) ey <
Cllg llra).
Thus we conclude that
ILI<CIl fllae) | g(x) Il re,).
Therefore, T is bounded on B*(B,).

then T4 (1) =P, () € B*(B,). This completes
the proof.

4 Compact Toeplitz operators

In this section we present our main charac-
terization of compact Toeplitz operator on B*(B,)
with 0<<q<1.

Theorem 4.1 Let 0 <<q <<1. If the positive
Borel measure p satisfies ‘l}‘ril] S..5(p) (z) =0 then
T4 is compact on B*(B,) if and only if P, () €
B (B,).

Proof
such that [l g, | »®,) <1 and g,(2)—>0 uniformly

Let {g,} be a sequence in B* (B,)

on compact subsets of B,. Let f be in the unit
ball of A'(B,), by a similar discussion as Theo-
rem 3. 1, we have

<f’T71(gn)>a 1 =
CﬂJB P, (fg.) () (1 —| w ") du(w) +

| T=P)(fg) @1~ w] duteo) =
I, +1,,,

where
L., = CJ}B f(2) g, (DQ. () (=) »
(1 —| =z |Hdv(2),

. —— _ — B . e
I, *CFLCHJ JB (g, (w) 8.(2)) f(z) (1 |Z‘ ) (1 \u\ )

(1 = {w,z)) e

Firstly, we consider I,,,. Let By ={z:|z| <&},
where 0<<§<<1. We will divide the integral into

dv(2)dpl(w).

two parts, say,

o (7)) — o (2)) F _ 2 \a _ 2 Va1
i | L, | = limg e, | [, 00 A2 AT DT quoduten | -
: G — e ) (1 —| w [P
lime, 1c, || £ (0~ 2| (é”(“)(lgjizlil)m[?' " Q) do(2) | <
- ] L@ —m @ | A fw |
n ~ riiri o , 2 r]
1ir{1CJB | fo | A = |2)aJB \g,,,(w)‘lg:,iz L;%L“' " duCGordo() 2 Jo + o

For J,.» since

031001-5
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(1—] w]

2 )r,@H

lim S, () (=) = lim (1| = |2/

n

1 —<Cw,z)

merzdp(w) =0,

where =0 and a —p>0, for a fixed >0, let § get sufficiently close to 1 such that S, ;(x) () <<e, com-

bining with LLemmas 2. 3 and 2. 5, we have

n—>co

I <limCLB s A WJB (1 —| 2 | | w |2«

n o

| gn(u') 7gn(z) | (1 7| w |2)r}3~1 ‘ w — =z ‘

dp(w)dov(z) <

| w—z | |1 — (w,z) | e
= ) A w|HD P | w—2z|
oy —| < 238 ) < <
}LmCLB . | f g w1 —] 2] JB” 11— ooy dy (w)dou(z)
. ‘ B N (1 7‘ w Z)rﬁ’*l Y <
CJ]E” @ las )JB,, e ) duwdoto) <

G| 1/ o <GS ae) <G

B, \Bj

For J,.,» let B, ={z:|2| <r}, where 0<<r<<1, we also divide it into two parts, say,

g (w) —g, () | A —|w [

I <11££1CJB | fCo | -] 2 WJ ]

n \Pr

T = oy |77 dp(w)do(z) +

2. (w) — g, () | (1 —| w P!

n—>co

. ~ o 2\a
hmcj% | f | (1~ = | >LB .

n

For K,.,» by a similar discussion as J,,, we ob-
tain K,,, <Ce. For K., since g,(2)—>0 uniform-

ly on any compact subsets of B,, we can choose n

large enough such that g (w) — g,(2) |
(1—]w|?)* ! < uniformly for = belongs to com-

pact subsets of B, . therefore

2)&.

n—>ox

Ko, = limC| [ £ | (1] 2

j | g.(w) —g,(2) | (1 —| w]|®)!
B

|1 — (wyz) |7

d/l(w)d'v(z) <
cej | FC | (1 —] 2 [2)e «
By

JB 1—<wlz> e du(w)do(z) <

Glflas, <C.

Consequently, we have lim | I,, | < Ce, which

n—>co

yields that lim|I,,, | =0.

oo

For I,,,, since [l g,(2) [l rw) <1, g,(x)—>0
uniformly on any compact subsets of B,, we can
choose n large enough so that | g, (2) | <e uni-
formly for = belongs to compact subsets of B,.
Combined this with what we have estimated in the
proof of Theorem 3.1, we obtain

hm ‘ Ilm ‘ =

n—>co

‘ | @8O E (| = [rdue) | <

|1 — (w,2)

— duwido(z) A K, + Ko,

Glfllas) Py lpe) <Ce.

Thus lim| I, | =0. Therefore, T% is compact on

n—>co

B (B,).

Conversely, let T% be compact on B* (B,).
Then T% is bounded on B (B,). By Theorem
3.1, we have P, (x) € B*(B,). This completes
the proof.

5 Characterization fractional deriva-
tives on Bloch-type spaces

In this section, we will give a characteriza-
tion of functions on B*(B,) in terms of fractional
derivatives and its module with ¢ >1.

For 0 <<a <1, the Lipschitz space A, (B,)
consists of all holomorphic functions f on B, such
that

Il fI%®)=
| f(2) — f(w) )

—:2,wEB, ,zFw) <o,
|z —w|

sup

The space A, (B,) is called the holomorphic Lips-
chitz space of order . It is well known that each
space A, (B,) is contained in the ball algebra and
contains the polynomials. For each « €(0,1), the
holomorphic Lipschitz space A, (B,) is a Banach
space with the norm || f [la®, = | fC(0) | +
I fIi®,. Please refer to Ref. [ 1, Theorem

031001-6
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7. 8] for the detailed proof.

Lemma 5. 1) Suppose that 0 <<q¢<<1,8>1
and f is holomorphic in B,. Then the following
conditions are equivalent;

() feEAB);

(i1) f is in the ball algebra and its boundary

values satisfy

O =FO1 .
sup{ e DEEBLLAE <o

(i) (1—]2|")'""¢|Rf(2)| is bounded in B,;
(iv) There exists a function g €L~ (B,) such

that
_ g (w)dvz(w)
f(Z) JB” (17<z,uj>)n\l\&a

(v) A—z|®"«|Vf(2)]| is bounded in B,.
Lemma 5. 2" Suppose that ¢ >0,8>1 and
f is holomorphic in B,. Then the following condi-

, 2 € B,;

tions are equivalent;

() f€B(B,);

(i) The function (1—|z|®)* | Rf (2) | is
bounded in B, ;

(iii) There exists a function g €L~ (B,) such

that
oy — g (w)dvs(w)
/= J (1 — (zow) )"’

In view of Lemma 5. 1 and Lemma 5. 2, we
clearly see that A,—,(B,) =B¢(B,). for any 0 <<

a<<1. Therefore, in order to obtain a character-

z € B,.

n

ization of the functions on B* (B,) in terms of
fractional derivatives with 0<<¢<<1, we only need
to get the corresponding result for A, (B,), and
Zhu in Ref. [1, Theorem 7. 17 has gotten this,
which is shown in the following Lemma.

Lemma 5.3 Suppose that t>¢>0. If yis a
real parameter such that neither n+y nor n+y -+t
is a negative integer, then a holomorphic function
f in B, belongs to B*(B,) if and only if the func-
tion (1 —|z|*)"* 'R”"f(2) is bounded in B,.

By using the relation A—,(B,) =B*(B,), we

give the characterization of functions on B*(B,) in

terms of fractional derivatives with 0<<q<CI.
Theorem 5.4 Suppose that 0<<q<<1, ¢ +a>
1. If 7 is a real parameter such that neither n+7y

nor n+y -t is a negative integer, then a holomor-

phic function f in B, belongs to B*(B,,) if and on-

ly if the function (1 — | 2 |*)"“ 'R f (2) is

bounded in B,.
Lemma 5, 5!

y+t is a negative integer. If §=y + N for some

Suppose neither n +7y nor n+

positive integer N, then there exists a one-varia-
ble polynomial h of degree N such that

1 _ hzw)
(1— (o))" TP (1 — (g, o)) 1B

There also exists a polynomial P(z,w) such that

1 _ P(z,w)
(1—<Z’w>)uvl+ﬁ+l (1*<Z,U}>)”vl+ﬁ.

Lemma 5. 6

y+t is a negative integer. Then the operator R”

R

R,.,

Suppose neither n+7y nor n+

is the unique continuous linear operator on H(B,)
satisfying

R 1 _ 1
(1—<Z,w>)71.1‘7‘! (17<z7w>)71\11y

for all w €B,. Similarly, the operator R,, is the

unique continuous linear operator on H(B,) satis-

fying
1 _ 1
(1—<Z,~w>)”71+7+’ (1*<Z,w>)"+l+y

for all weB,.

Next we give the characterization of func-

R,.,

tions on B*(B, ) in terms of fractional derivatives
with o >1.

Theorem 5.7 Suppose that ¢ >1 and z >0.
If y is a real parameter such that neither n +7% nor
n-+ty-+tis a negative integer. Then a holomorphic
function f on B, belongs to B*(B,) if and only if
2y« IR £(2) is bounded on B,.

sup(1—|z
2 ]BH

Proof If f € B°(B,), then by Lemma 5. 2
there exists a function f € B*(B,) such that
g (w)dvy(w)

S :J (1 — (zywy)me?’
here 3=y —a+N-+1 and N is a large enough pos-

Z GB”v

]BH

itive integer such that §> —1. It follows from
Lemma 5. 5 that

R™ () :C“J h ((zyw)) g(w)

B, (1 — (zyw))mes

d'U,g("LU) )

z € B” ’
where h is a one-variable polynomial of degree
N—q+ 1. An application of Lemma 2. 2 then

shows the function (1—]z|?) "R f(z) is

031001-7
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bounded on B,.

Next,
(1— |z "™R" f(2) is bounded on B,. It fol-
lows from the remark of Ref. [1, Lemma 2. 18. ]
that R”'f and R”™N'f are comparable for any hol-
function f, hence the
(cg/cprari) (I—[=|) RN £ (2) is also

bounded in B, , where N is the same as the previ-

we will assume that the function

omorphic function

ous paragraph. By Lemma 2.1, we have
RN f(2) =
_ 2 a1+ 2 ¥Nut
C'gJ A—]wl®) R f(w)dv(w) =
B

(1 _ <z’w> )n+1+ﬁ+rl+l

J' (1 _‘ w 2)r1+zR}HN./f(w)
B (1 _ <z’w> )erer-H\Urt

where =y —a+N +1 is also as in the previous

n

dug (w) s

n

paragraph. Apply the operator R,:,, inside the
integral sign and use LLemma 5. 6, we have

(17 ) Z)a l+tR7+N.,t ( y)
f@ =| <|11i‘<z,w>>“““"]~‘:' -

j (1 _‘ w ‘Z)rlJrerhV.zf‘(w)
B (1 — {zyw) )P

Since the function (1 — |w]|?)* RN £ (w) be-

longs to L (B,) by Lemma 5. 1, we see that f is

dog(w) =

d‘Uﬁ(u‘).

n

in B*(B,) in view of Lemma 5. 2,

Finally, we give the characterization of

B*(B,) in terms of its module with ¢>1.

Theorem 5.8 Suppose that ¢ >1 and f is
holomorphic in B,. Then f&€B*(B,) if and only if
the function (1—1]2|®)* '] f(2) | is bounded in
B,.

Proof If /€ B*(B,), then by Lemma 5. 2,
there exists a function g €L (B,) such that

O :j

n

g (w)dvy(w)
(1 — <z w)) s’

where 3> —1. Thus, by Lemma 2. 2, for every

< GB”?

2z €B, . there exists a constant C>0 such that

(w)
o= ] a _fz";wwdvﬂ(w)‘ _
(] 2 D (w)
C, jBn L EE S o) ‘ <

v [ o A —|w]|®F
Collgl Jma (1 — (zyw))rtets

C —| z|*) b,
Thus (1 —]2|»“ | f(2)]| is bounded in B,.
D f(2) | <M for
then by Lemma 2. 1

dv(w) <

Conversely, if (1—|z

some constant M > 0,

we have
oy (1 —| w5 flw)
f(2 crlj T ) dv(w),
z € B,.
Thus

Rf ) = Y a 2l = D
=1 IZp k=1

dzy

(1 = {zyw))m!

=
cer1(n+a) >, sz
k=1

]EVI

A~ w D" flwz,w

0 ([ A—]w|H flw) B
(JB,, (1 — (zry)"™ d“"("‘”))’

A w D@ w0

2 dv(w).

o1 (n -0-01),;24]3” (1 — (zya0y et

By Lemma 2. 2, there exists a constant C>0 such
that
| Rf(2) | <co1(n+a) s
J (=] w D" | flw) |
B

[T — ey [t () <

n

CM (1 —| 2|5
for all z €B,. This shows that f € B*(B,). The

proof is end.
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