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coupled stochastic parabolic equations
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Abstract; In this paper, we investigate the maximum likelihood estimator of the parameter of a partially
observable coupled stochastic parabolic equations driven by the additive white Gaussian noises in time
and space. For fixed observation time and noise intensity, the estimator is proved to be asymptotically
consistent and with asymptotic normality. A numerical example is provided to illustrate the theoretic results.
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1 Introduction

The general analytical theory of (linear and
nonlinear) stochastic partial differential equations
(SPDE) has made great progress and become a
mature mathematical field in the past few dec-
ades. Stochastic partial differential equations
(SPDEs) generalize deterministic partial differen-
tial equations (PDEs) by introducing driving
noise processes into dynamics. Not only the theo-
ry of SPDEs, but also the statistics for SPDEs
have recently seen a significant development, pav-

ing the way for a realistic modeling of complex
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phenomena.

The SPDE interested in this paper belongs to
a general class of activator-inhibitor models,
which can be described by two coupled stochastic
reaction-diffusion equations X =(A,I) of the fol-

lowing form;

TN o) =Dyt A +

Y tyx Aar? tyx
Fa(X(t,2),0) Toabalt.x),

D1C2) =D 1) + f1(X (L) ) +
dt dx

0‘151(1‘,1‘) )

where X = (A, I), with space-time white noise
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processes &4,&;, and o407 are the noise levels. In
cell dynamics, we think of A as a hypothetical
signalling molecule in response to an external sig-
nal gradient becoming enriched on one side of the
cell with diffusion D, , yielding polarity. I count-
er-acts A so that removal of the signal results in
loss of polarity with diffusion D;. f4 and f; re-
present the interaction functions of activator A
and inhibitor I. More detailed information about
fa and f; can be found in Ref. [1]. Meinhardt"
has been the first to apply such models to cell po-
larisation in the context of cell migration, where
the ratio of activator-inhibitor diffusion can be
tuned to either obtain a single stable cell front, or
multiple independent fronts associated with non-
directed random cell motility.

In the current paper we present a simple ver-
sion of the modified Meinhardt two variable mod-
el. We set fu( X, 2)2) =10t ,2), [1(X(t,2),
x) =A(t,x), oo =0 =1, D; =1 and focus on the
following specific coupled stochastic parabolic e-
quations problem;
dultsx) =0u.. (tsx)dt +o(t,2)dt +

dW, (t,2), t€[0,T], z €A,
dv(t,2) =ult,x)dt +v,, (t,2)dt +dW, (2, 2)
te[0,T], x €A,
u(0,2) =v(0,x) =0, x €A,
u(t,0) =u(t,m =0, t€[0,T],
v(t,0) =v(t,®) =0, t€[0,T] @))
where A=(00,1, {W, ()}~ and {W,(#) } ~, are

two cylindrical Brownian motions on L* (A),

(dW,(t,2), i =1, 2 is also referred to as space-
time white noise) on a complete filtered probabili-
ty space F=(Q,F,{F,}~0,P) with the usual as-
sumptions (completeness of F, and right-continu-
ity of F,), T<co is fixed, moreover, 0 € (a,f3),
«>0 is the unknown parameter to be estimated
based on finite dimensional approximations to so-
lutions of such systems.

To the best of our knowledge, this problem
has not been studied for the partially observable
coupled stochastic parabolic equations, that is to
say, we can only observe one process in the cou-

pled equations. In this paper, we extend the esti-

mation method introduced by Huebner and Khas-
minskii, where the parameter estimation in a
single equation is discussed and first introduced
by using the spectral method to study the consis-
tency, asymptotic normality and asymptotic effi-
ciency of maximum likelihood estimator of a pa-
rameter in the drift coefficient of an SPDE. Re-
cently, Cialenco'” showed some attractive meth-
ods to estimate parameters in stochastic partial
differential equations. Most approaches focus on
estimating coefficients for the linear part of the e-

[5]

quation, either from discrete”’ or spectral obser-

vations™ ¢

[7, 8]

, but also the aspects of the driving
noise ,» have been analysed.

The number N of the Fourier coefficients
used to calculate the maximum likelihood estima-
tor @y is a natural asymptotic parameter. The as-
ymptotic properties of Ox as N—c is a focal point
of this work and we prove that the maximum like-
lihood estimator 5\ is strongly consistent and as-
ymptotic normality which is also our main result.
Throughout this work, N is the only parameter
of asymptotic.

The paper is organized as follows. In Section
2 we set the stage: starting with notations, con-
tinuing with the solution of Eq. (1), ending with
the description of the statistical experiment and
presenting the main object of this study: the max-
imum likelihood estimator. Section 3 is dedicated
to the main results. Numerical example which il-
lustrate the efficiency of the proposed estimator

are presented in Section 4.

2 Preliminaries

For a random variable &, E& and Varé denote
the expectation and the variance, respectively. R”
is an n-dimensional Euclidean space, N(m,s") is
a Gaussian random variable with mean m and vari-
ance ¢°. B* denote the transpose of matrix B.
Notation a, ~ b, for two sequences {a,},~|,

N ) . ay,
{b,},=1, with a, >0,b, >0, means that lim;* =

n—>:»:/)7,

1.

n 3
For example ,7* —2n~n" and Z b~ %

k=1
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Let us look for the solution of Eq. (1) as a
Fourier series,

Definition 2.1 A solution of Eq. (1) are two
random element with values in L* ((0,T) X A),
such that, for every twice continuously differenti-
able on [0, ] function ¢(x) satisfying ¢(0) =
() =0 and every ¢ € [0, T], the following e-
quality holds with probability 1:

(s )z (1) = ﬁj;(u,gon )iz ()ds +
| Corg iz (s =W 0,

(va@ )z (1) = J;("Usgoﬁ,- Dz (s)ds +

| gz ds + W2 ) ()

Proposition 2,2 There exists a unique solu-
tion of Eq. (1).

Proof We solve Eq. (1) by using the classical
Let h, (x) =
V2/ 7+ sin(kx) sk =1. Taking ¢ =h, in Eq. (2),
due to W;(¢), i =1,2 is the noise term, a cylin-

method of separation of variables.

drical Brownian motion on L?(A) , at this point

Eu; (1)
Evk(l)uk(t) E“Ui ([)

: (“2;’\1"6);(1./:(2‘)*(“ HM)
)
|

EY/e (I)ka (l) :[

Ale Az <2 B2+

2 ">x2,k<[>—(2k A

where

A== (R O+k) +/ (RO—k)7 +4

and

Az,k - (162(9+/€2) W (/320*162 )Z +4

are the eigenvalues of A, +A; ,

Xl,k(t) = */Tlﬁ(l *GA][ ) ’

Xz,k(t) = */?1#(1 — el ).

By calculation, we have

Bui (1) =3~ EAM[(Z & ;A”" )Xl,/q(t) —
<L;/1M’>X2.k(l‘)}’”ﬁ (6)

XZk( )

Xl}»()

we interpret d W,;(¢,x2), i=1,2 as a formal sum

AW, (t,2) = D) h()d W, (1),

=S

where (W, (1) }=1,
standard Brownian motions for different 2. We
find that w, (1) = (us hy )12 (2) and v, (2) = (v,
h)izn (1) satisfy

i =1, 2 are independent

() :—8k2J0 uﬁ(odwj( 0 ()ds +W, (D)

0 (D) ——A%J w(s)ds+J (s + W, (D

(3)
Denote
u, (1) —k20 1
Y(t):[ : J,Al:[ ]
! amd L —k?
and
W, ()
Vk(f) :[ :|.
Wi (D)
We know the solution of this Y, (2) is
Yo = [ dvico )

0

here V, is a two-dimensional standard Brownian

motion. Therefore,

Euk(lf)vk(t)} J Ak |
Vs =

and
Bk (0 =3 39[(“2;% s (0 -
e O @

which implies «(2),v(¢) € L% (Q;L*(A)) for all
0<r<T.
Since h;, # = 1 is an orthogonal basis in

Ek;l ukhk andv:

Zk>l v, h, are solutions of Eq. (1). Uniqueness

L*(A), we conclude thatu =

of solutions of Eq. (1) follows from the unique-
ness of solution of Eq. (3) for every k. Proposi-

tion 2. 2 is proved.
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Assume that only {u;(2) }1<<n is observed.
Neglecting the contribution of v, (¢) in Eq. (3)
leads to a parametric estimation problem for 4
with respect to the scalar processes {u;(2) }ocicr
for k=1,...,N. It is obvious that u,(#) is a diffu-
sion process. Then, from the result of Ref. [ 9,
Theorem 7. 15 on page 279 ] for each @ and each
k. the process uf : = {u,(1),0<t<T} generates
the measure P, in the space of continuous real-
valued functions on [0, T]. Let us denote the
space by (Cr,By). We can get the following
likelihood function:

d Py,
dPo.s

exp<*JZ(9k2 w, (Od w, () *JOT F kg (t)dl).

(ui) =

L/; (‘9) -

Similarly, the vector u™ = {ul ,uf,...,uk }, gener-
ates a probability measure P} on the space of con-
tinuous RY-valued functions on [0, T ]. Since the

random processes u; (¢) are independent, P} is a

N
product measure, say, Py = [l P,,, and thus the
k=1

measures P} are equivalent for different values of

6. In particular, we have

_dP

LN () —dp?\,<uf\'> =
0

N T
exp(— 2 kZJ Qup(Dd u, (1) —
k=1 0

N T
> /&J & i ()do) (8)
k=1 0

Maximising LY (@) with respect to 0, leads to the
following MLE .

N T
e jo we (O d w (D)
@N — k=1 j

N
S [ wwd

k=1

9

3 The main results

In this section, we use é\ to estimate the un-
known drift parameter § in Eq. (1) and present
the main results of this paper as follows.

Theorem 3. 1

consistent estimator. Namely

imN? (0y —0) =0.P-a. s (10)

As N—>co, @y is a strongly

Also it is a asymptotically normal estimator of 4,

%24
that is,
i NY (G —0) = 60
limN* (9y—0) =N (0.7 ) (1D
d
where " =" represents convergence in distribu-
tion.

Lemma 3.2 Let &, n=>1 be independent
random variables such that & =0, 2k>1 EE& =

4 oo, and

with probability one.
Lemma 3, 3!

be independent standard Brownian motions and

Let w, :wk(z‘), k=1,....n

let fr=/f+(t), k=1,...,n be adapted, continuous,

square-integrable processes such that

> o

lim A= —

2 ]EJI fi(e)de
k=1 0

in probability. Then

n—»co

n

> ftodwn o

k

d
=N (0, D).

lim =S
(2 B[ fiodt)

Proof of Theorem 3.1 We borrow some ide-

1/2

as from Lototsky"'”. From Eq. (8), we can get
N T
| Sk | wodW, 0
(9\\] —0 = £l : +

N
SUE [ wd
k=1

0
N

SUE [ w o uwd

k=1

12)

N T
D k4J () de
k=1 0
For discussion, we divide u(¢,x) into u(t,x) and
u(t,x) as
jd Lj(t,I) :6171;1- (tvI)dt+dW1 (tvl’) ’
ldaltoa) =0u., (tox)dt +olt,2)de

Correspondingly, we have u,(¢) and w, (¢)

13
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{d flk(f) = —9k2ak(t)dt+dW1,k(l),
du (1) = =0k u, (Ot +ou (D dt

From now on, we divide the proof into two parts.

a4

At first, we prove that

N o
S # | wioadr
=1

N T
>k EJ at (Ddt
k=1 0

in probability. Next, we prove

=1 (15

N

T
SR w wd
lim A= =0 (16)

N—-oo IS JT ui () dt

k=1 0

in probability.
(1) In order to estimate Eq. (14), we firstly

do some computations. we have

T
B| aiod ~ L an
Var(| " aiode) ~ 5 L (18)
and
Bk | atod)~LE (19)
Var(' | atodr) ~ TE (20)

Next by applying Lemma 3. 2, the following e-
quality

S\T
E>) & JT @ () dt
k=1 0

N T
STE | aod
k=1 0
holds in probability. Further, combining Eq. (5)
and Eq. (16), we have

N T
E, & J W (D de
k=1 0

N
E>) & JT up () de
k=1

=1 D

=1 (22)

0

Now we estimate
N

T
> jo Bk (D di
N e
> rwwd
k=170
N T
SR @ )
k=1 0

N T
SUE | o
k=1

0

W IEIE . R T UL 48 A KL A T7 A2 40 69 S S AE 3 % 59 %
N T
ST (] a2 wnd)
1+4 70
N T
SUE | arod
k=1 0

(23)
from Eq. (13) and obtain

t

(1) :J e 4 (s)ds =

0

t 2

J et ey, (s)ds <
0

t

J 5131225 e v, (s)ds <

0

ﬁgk% ([ otoa)” ~ocky e

The last equality can be derived from Eq. (6). On

the other hand, the Cauchy-Schwarz inequality
shows that

| awamd=(] #dr)” (] awd)’

(25)
Eq. (23) and Eq. (24) lead to
N T
S (] o + 20 w@)d)
lim += . N =0
N-—>co - T
SUE | aod
k=1 0
(26)
Finally, it holds that
N T
STk wod
e =1 27

N T

> k’lJ w; (D dt

r=—1 0
Combining Eq. (20), Eq. (21) and Eq. (26), Eq.
(14) holds in probability.

(ii) According to Eq. (22) ~Eq. (26), one

can also get

N T
2
; k J 0

N T
> k| aod
k=1 0

From Eq. (16), we have

(D de

=1 (28)

B(# | awd)~L (29)

and

Var(k* | aiode) ~ (30)

_T
2 0° K
By applying Lemma 3. 2, the following equality

021002-5
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BY) | atd > (| Baod+ | Beiod)
=1 -0 ~-1 3D . . —0
N T N T
S k| aod Sk | Batod
k=1 0 k=1 0

holds in probability. Moreover, for v(t,x), we
can take the same separation as u (¢, x), then
we have
[du (== o @d+dW,. (1),
1d o, () = k5, (O dr +u (O dr

As the same as u; (¢), for v,(¢), we have

(32)

=~

T
1J (O dt

0

=1,

T

v (D de

Mz HMZ HMZ

0

}
I

T

i
" JI W (D dt
J, @

k)

M<

(Hde

x~
Il

and

N -
Sk et

— 0

= - =1 (33)
> K E| wd

k=1 0

Substituting these equalities and Eq.

(14),
Eq. (27), Eq. (30) into the inequality below, it is
direct to obtain that

Z B[ u

N ~

/&J (D de
0

e

ZV) # (] wtode+ [ i)

,—1 - -
SUE | o

0

—

~

~
|

-

?\
I
—

g ([ wwd+|

0

@E(t)dt)

-
MZ°

b JI i (t)de
0

M

T . T i
K j Eal (0 de +J Eot (£)dt )
0

N
>k | Eaoa

~
Il
-

Then, by

T
_ T
JO E'U%(l‘)dl‘ ~ ﬁv

together with Eq. (16), one has

in probability. Thus Eq. (15) holds. Substituting
Eq. (14) and Eq. (15) into Eq. (11), we obtain

T
R Z k J) u,\,(t)dWl,k(l‘)
On —0 = +

N
>k L a @
N -
S| w o
-
SUr [ i

N T
Sk wodW, o
=l (34)

2 Rt JOT Eui ()dt
k=1

in probability. By the strong law of large num-
—@0) =0 with probability

ber, we obtain lim (dy
N»co

one, strongly consistent is proved. Applying
Lemma 3. 3 to Eq. (33) with f, (1) =u, (), k=

1,....n, we see

2 B | uodw o
lim = =N (0,1).

N T
JZ B B (o de
k=1 0
By direct calculating with Eq. (5), we obtain

TN*
60 -

10 hmz k4J Eul () dt ~

Therefore,

N
SUE [ wodw o

k=1

NI ).

lem N T
2 Jo Eu (D dt

Furthermore, one also has

limN* (0 e>iN(o,%ﬁ).

Eq. (10) holds. The proof is end.

4 A numerical example

In this section we present a numerical illus-
trations to exhibit the performance of the MLE (9\
given by Theorem 3. 1. We first simulate the
sample paths of Eq. (1) by using the Monte Carlo

method with the classic Euler-Maruyama scheme.

021002-6
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In each numerical experiment, we generate 10°
sample paths with step size At=10"% and T =10.
We examine the following three different set-

tings, respectively: (i) §=0.5; (iDg=1; (i) §=2.

Tab.1 The ME and MSE of MLE 0y

E Oy —0> B Oy —0)2

3%0=0.5 N=5 —0. 0616 0. 0108
N=10 —0.0134 0. 0020

N=14 —0. 0056 6.37e—4
3x0=1 N=5 —0. 0425 0. 0160
N=10 —0. 0034 0. 0021

N=14 5.20e—4 4.75e—5
2%x0=2 N=5 —0.0142 0. 0204

N=10 2.43e—4 1.73e—5

Tab. 1 reports some statistics related to the
Ox. which include the Mean Error ( ME)

E(y —0) and the Mean Square Error (MSE)
E(@AN —0)%. The data shows the error between

the QAN and the true value is very small and tell us
N=5

the (9AN is strongly consistent,

Fig. 1 ~ Fig. 4 are plotted under the setting
(i1). Fig. 1 shows the MLE 6A?N and the true value
on one picture with N=5, N=10 and N =14,
We find that as N increases, MLE (9AN is closer to
the true value. Fig. 2 depicts the histogram of the
statistic (Oy —0) with N=5, N=10 and N =14,
The dashed curve is the normal density. Fig. 3 de-

picts the histogram of the statistic N%/% (éw —8)
with N=14. Fig. 4 we use the normplot function
in matlab to compares the distribution of the data
of N* @ (Oy —6) to the normal distribution
with N=5, N=10 and N =14, we can find that

the coincidence degree is very high.
From this example we can conclude that the
MLE works quite well (from Theorem 3.1 ), and
. s /T ~ d
we have thZ\/%((?N —0)=N(,1).

N—>co

15 1.15 N=10 1.015
——MLE . A
14 =" v T e Lot
13 I ‘
‘ 100501l
12 [ 1.05 |
1.1 ‘ ‘ | |1 I 1.000 i
‘ I | Il {1 L6 L | 1.004" | 0.995//
1 AT PR R l |
ool N B0 1 e AR O 0.95 ’ ‘ 0.990
08 ‘ fil "1 i 0.985
07 0.90 0.980
00200 a0 o soo  dooo 8% 200 400 600 800 1000 %% 200 400 600 80 1000
(a) (b) (o)
Fig. 1 The comparision the MLE O~ and the true value
N=5 -
100 T 100 N=10 120 ) N=14
90
80
70
60
50
40
30
20
10
0

-05-04 -03 -02-0.1 0 0.1 0203
(a)

-0.15  -0.1 -0.05

0 005 01 015

-0.03 -0.02 -0.01 0 001 0.02 003
(o)

Fig. 2 Histogram of (fy —@> with (a) N=5, (b) N=10 and (¢) N=14. The curves are the plots of the normal den-
sity: (a) p= —0.047 835 8 [—0.055 624 4, —0.040 047 3], ¢= 0.125 511 [0. 120 241, 0.131 268]; (b) ©=
—0.003 259 [—0.006 115 56, —0.000 402 4487, 6= 0.046 032 9 [0.044 100 1, 0.048 144 27]; (c¢) =
0. 000 551 763 [[0. 000 110 152, 0. 000 993 374 ], = 0. 007 116 48 [0. 006 817 68, 0.007 442 887, where ©is
the mean, and ¢ is the standard deviation, and the intervals next to the parameter estimates are the 95% confi-

dence intervals for the distribution parameters
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N=14

140
120
100
80
60
40

20

L S S—

-2 0

2 4

Fig. 3 Histogram of N%A / 6;% (Gy —0> with N=14. The curve is plot of the normal density: p= —0.013 475 1
[—0.082 977 3, 0.056 027 2], 6= 1.120 02 [1.072 99, 1.171 39]

Probability

(a)

N=10

(b)

N=14

Probability

0,01 ¥
003 . F
001

+

2 10 1 2
Data

6 5 4 3

(c)

Fig. 4 The coincidence between the distribution of N%A / L (Oy —0> and the normal distribution, the plus signs

60

(’+7) marker is the data sampled form N‘%A / 6;1(; (Oy —6> and the straight lines represent the normal distribu-

tion

References:

[1] Lockley R. Image-based modelling of cell reorienta-
tion [ D]. Warwrick: University of Warwick, 2017.

[2]  Meinhardt H. Orientation of chemotactic cells and
growth cones: models and mechanisms [J]. J Cell
Sci, 1999, 2867 2874.

[3]  Huebner M, Rozovskii B L. On asymptotic proper-
ties of maximum likelihood estimators for parabolic
stochastic PDE’ s [ J]. Prob Theor Rel, 1995,
143, 163.

[4] Cialenco 1. Statistical inference for SPDEs: an over-
view [ J]. Stat Infer Stoch Proc, 2018, 309: 329.

[5] Markussen B. Likelihood inference for a discretely

observed stochastic partial differential equation []].

(6]

7]

(8]

[10]

Bernoulli, 2003, 745 762.

Pasemann G, Stannat W. Drift estimation for sto-
chastic reaction-diffusion systems [ J]. Electron ]
Stat, 2020, 547. 579.

Bibinger M, Trabs M. Volatility estimation for sto-
chastic PDEs using high-frequency observations
[J]. Stoch Proc Appls 2020, 3005: 3052.

Chong C. High-frequency analysis of parabolic sto-
chastic PDEs [ J]. Ann Stat, 2020, 1143; 1167.
Liptser R S, Shiryayev A N. Statistics of random
processes (I): General theory [ M]. Verlag: Spring-
er, 1977.

Lototsky S V. Statistical inference for stochastic
parabolic equations: a spectral approach [ J]. Publ
Mat, 2009, 3. 45.

R e e L e MM s Y

sl ATt
j* s AR,

t

R AT LIRS & BEPLI Yy R S EAE LT DNl AR AR, 2022, 59 021002 i

+ P& . Miao F F. Parameter estimation in partially observable coupled stochastic parabolic equations [J]. J Sichuan j }
+ Univ: Nat Sci Ed, 2022, 59. 021002.

et ettt e

021002-8

+





