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An iterative solver for time-periodic heat optimal control problems
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Abstract: In this paper, an iterative algorithm is introduced for solving a class of optimal control prob-
lems constrained by time-periodic heat equation, where the optimization is concerned by searching a best
source term of the heat equation to minimize the objective function. By applying the optimality condi-
tion, the problem is firstly transformed into two coupled time-periodic heat equations. Then the iterative
algorithm is applied to decouple the coupled PDE system. Finally, the equations are separately solved in
the Gauss-Seidel pattern. Numerical examples are presented to illustrate the robustness of the conver-
gence rate of algorithm with respect to the discretization parameters,
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. reactors”” and energy-producing kites'", etc.
1 Introduction

Meanwhile, such optimal control problems also a-

In this paper, we consider the optimal con- rise in a variety of chemical engineering applica-
trol problems constrained by time-periodic heat tions'® & 7 19 1% Wsuch as the moving bed proces-
partial differential equation (PDE)"”, Applica- ses”' which find widespread use in the pharma-
tions of such problems include the design of re- ceutical and food industry.

.[12]

verse flow reactors Different from the usual setting for linear

, cyclically steered (bio-)
parabolic control systems in the literature, a par-
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ticular feature of the time-periodic parabolic con-
trol problems is the constraint that the solution of
the underlying dynamical system is periodic in
time, This kind of optimal control problems ap-
pear as the sub-problems in inexact Newton or in-
exact sequential quadratic programming methods
for the solution of nonlinear optimization prob-
lems with time-periodic partial differential equa-
tion (PDE) constraints.

The computation of optimal controls is based
on the optimal conditions and their approximate
solutions using some numerical discretization.
The applicability and the accuracy of this strategy
depend on the availability of structure of the dis-
cretized optimality systems., If accurate solutions
are required, the resulting discretized problems
will inevitably be of large scale, because in this
case we often need to use small discretization si-
zes. Thus, it is an important issue to design effi-
cient solvers to treat the optimal control problems
with time-periodic PDE constraint, Existing nu-
merical methods for this kind of control problems
include the relaxation techniquest®, the multi-
grid method”” and the interesting pre-condition-
ing technique which attract considerable attention
in the past years (see, e. g. , Refs. [1,7,10,11,
13,16,20]). However, these existing approaches
are more complicated than the one proposed in
this paper. In a word, the new iterative algorithm
studied here has essential difference with respect
to mechanism, computational cost and complexity
with the just mentioned algorithms.

In this paper, we propose a new approach to
solve the time-periodic heat optimal control prob-
lems. We firstly reformulate the optimal control
problem as two coupled time-periodic heat equa-
tions. Then we solve this coupled PDE system via
an iteration process. By picking up an initial
guess for the control variable (chosen randomly in
practical computation), we solve the state equa-
tion and the solution plays a role of source term
for the adjoint equation. Then we solve the ad-
joint equation and with the solution we can pre-

pare for the next iteration. We show that the con-

vergence rate of the proposed iterative algorithm
is robust with respect to the space and time dis-
cretization parameters.

The rest of this paper is organized as fol-
lows. In Section 2, we present the optimal con-
trol problem studied in this paper. The optimality
system is also derived in detail in this section.
Section 3 presents the algorithm and the details
concerning implementation in practice. In Section
4, we show numerical results which indicate that
the convergence rate of the proposed algorithm is
robust with respect to the change of discretization

parameters, Section 5 concludes this paper.

2 The optimal control problem

The model that we are interested in is the
following optimal control problem;

min/ (y,u) ,with

you

1 _ 2
J(y.uw) = leg (y(x,t) —y(x,0))*dadt +

1
7 20 .
ZUQ & (o) dadt (1a)

where y (the state variable) and « (the control
variable) satisfy the following constraints

Ay —plAy=—u, (x,t) €QX0,1),

y(x,0) =y(x,1), x€Q, (1b)

Iy(x,z‘) =0, (x,1) €dQX0,1)

Here QSR is a general space domain, y(x,¢) is a
known function and 5>0.

In order to solve (la~1b), we now derive
the optimality system. Denote by y(u) the solu-
tion of the state equation in (1b) and by vy (u;0u)
the first-order directional derivative of y at u a-
long the direction u. Let

e(ysu) =d,y —pldy —u.

Then, a routine calculation yields

ey (v y (u;ou) +e, (yyu)du=0 (2)
It is easy to get e, (y,u) =9, —pAand e, (y,u) =
I, where I is the identity operator. Substituting
these results in to (2) gives

d,y" (u;du) —/JAy/(u;é\u) —0u=0 (3)

Let ey and e, be the dual operators of e,and

e, » defined as follows: Y v,u,
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(eyvsu) =Cvseyu)s{ev,u) ={v,e, uy  (4)
where { * ) denotes the standard inner product in
the space and time domain Q X (0,1). Since e, =1,
it is easy to see e, =I. We now derive the expres-

sion of e; . We have
1

’ - (7, - -
(e v u) ljﬂ( v — pAv)udxds

jjﬂ d,oudxdt ’[JJQ Awdxdt =

0 0

I, o) ] ([ ) -

f/(u'ﬁu): lim f(u +r8u)—f(u) _
r—>0 r

—

— Jﬂ J;v Judtdx Jrﬂija Vo » Vudxdt =
1

1
*J J v dudtdx *#JJ vAudxdt =
ado )Ja

1
*j J v(d, +pAudzxdr.
aJo

This gives e, =d, +pA. In summary, the dual
operators implied by (4) are

ey =d, tulie, =I (5)
Let J(u) =] (y(w) ,u). Then we have

7 J i, Ly Qs +r0u ) = 3D TP = (ulaa) = 3Cra) )y 0

Q r—>0 r

ot——— o

i
2

Q r—>0 r

This gives

1
f/(u;au):JJ v (usouw) [y(w) — v ]dede +
)Ja
1

77[[(}14514 drdz (6)

In (3) and (6), by letting du =v —u with some

suitable v we have

1
f/(u;v —u) = JJQ Vv (uzo —uw) [y —y]deds +
0
l-

yJ()JQu("U —w)dadt, 9,y (usv—u) —

gAy/(u;‘v—u) —(v—u) =0,

which is equivalent to

f/(u;v*u) = (usv—u) sy —3) tplusv—w

ey (v y (usv—u) +e,(y,uw)(v—u) =0 (7)
where y:=y(u).

Let p (the so-called co-state variable) be the
solution of the following equation

e, (youwp=—(y—y) (8
Then it follows by using (8) and the second equa-
tion in (7) that

Cey(ysw)y (uso—u) s p) =

— e, (y ) (v—w) s p).

J lim LuCxst) +rdulzx,t) | *uz(x’t)dxdz.

Now, by using (5) and (8) we have
(ov—use, (y,u)p>=
(3 (usv—u) e; (yyu) p) =
—(y (uzv—u)sy—y) =
Vuso—w) s —(y—3)) €))
Since (9) holds for arbitrary directional variable
v, it holds
e, (youwp=—(y—3).
This together withe; =d, +uA (cf. (5)) implies
the following equation for the co-state variable p:
@, tpudNp=—(y—y) (10a)
Moreover, since (9) holds for all x €  and
t€[0,1], by letting x €9Q and t =0, 1 we get
the following conditions for (10a)
p0,2)=p(l,x) forx€Q, p(t,x) =0

for (x,1) €90 X(0,1) (10b)
Substituting (8) and (9) into (7) gives
]A/(u;v*u) =—v—u,e, (yyu)p)+
pusv—u) =(qu—e; (y,w)p,o—w (11)

By the so-called first-order optimality condition,
the minimization of f implies that f/ (usv—u) =0
holds all directional variable v, i.e. ,

(qu—e, (y,w)psv—u) =0, VY.
Since e, =1 (cf. (5)), this gives
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(qu—psv—u) =0, VYo

Hence, it must hold that qu =p, i.e., u :ﬂ.

U
Substituting this algebraic condition into the right

hand-side of the first equation in (1b)
.y —ply= *J;lfollows. In summary, we get

the following optimality system for (la~1b);

dy —pAy= *% s

y(x,0) =y(x,1), x€Q,
ly(x,t) =0, (x,t) €90 X0,1),
Jatp turp=—(y—3), (x,0) €QX0,1),
p(x,0) =plzx, 1), x€Q,
lp(x,[) =0, (x,1) €2QX(0,D 12)

When the co-state variable p is ready, the control

(z,t) €QX(0,1),

variable u can be chosen as u =yp.

3 The algorithm

We now propose an iterative algorithm for

solving (12) as follows.
b
dyt! */xAy"“:*%, (x:) €QX(0,1),

V2, 0) =y (2, D), 2 €Q,

VI (2, ) =0, (x,0) €90 X(0,1),

atkarl +#Apk71 _ _(yk+l —3).
(xs0) €QX0,1),

P, 0)=p (2, ), x€Q,

P (a, ) =0, (x,0) €90 X(0,1)

where £ >0 is the iteration index and for # =0 we

(13

need to pick an initial guess p° (x,¢) for the co-
state variable. In practical computation, such an
initial guess is chosen randomly subject to the pe-

riodic condition and the boundary condition, In

-1 2
A=1,ONs TALOL, d=2,

where Ax denotes the mesh size, m denotes the

mXm

(13), with p*(x,1) known from the previous it-
eration, we can first solve y* ! (x,¢)from the first
PDE and then solve p*"' (x,¢) from the second
PDE. The algorithm is therefore of the Gauss-
Seidel type.

Both the first and second PDEs in (13) are
time-periodic heat equations and many existing
numerical methods can be directly applied. As an
illustration, we consider the case Q=(0,1)? with
d=1,2,3 as follows. By a mesh with m nodes and
denoting the value of y(x,2) (resp. p(x,t)) at
the i-th node x; by y; (¢) (resp. p; (2)), the dis-
crete solution

VD) = (P (g o) oo s YT (g )T
and

PO =P () s P (g, DT
satisfy

dy"H 209)
J ydt +/¢Ayk+l(t):*p

,t €0, 1),

kall(o>:yk\l(t)

(14a)
and
k1
dJT(D —pA Pt (D == WO =30,
1 te0,D,
pk+l (O) :pk+l(t) (14b>

sy ()T, The matrix A
in (14) denotes an approximation of the negative
—A Dirichlet

boundary conditions. A concrete example of the

where y() = (3, (1), -

Laplacian under homogeneous
matrix A is the one derived through the centered
finite difference scheme subjected with Dirichlet

boundary condition:

’ d:19
(15)

A=, R QAx T L. OAL R, TAp IR, d=3

RM><M

number of spatial grids and I, € is the iden-
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tity matrix with M=m? in the d-dimensional case
(d=1,2,3). We can also consider other boundary
conditions and spatial discretizations, such as fi-
nite element and finite volume, etc.

For temporal discretization, we consider the
backward-Euler method for the state equation
concerning y*7' (¢) and the forward-Euler method
for the co-state equation concerning »*' (). This
numerical setting leads to the following full dis-

crete formula:

yﬁﬂ yﬁﬂ +,uA k+1_1f;;’
n:1 2 "'7N[9 (163)

M=o

and

k41 k41

pn p” ,LLAPde :7(3}71 1 yr:*l)7
n:N,,N[*L"'yL

po=pNt (16b)

where Ar denotes the time step-size and N, =

A Define
Y=yt 05,
P/e :(Pfew,ﬂ yoee
v+ — ke

’yf‘e\]/ )T9
PEa P

k ENT
7”17“0) ’

?:(311\7[71 9'"93/1 95}0)T9/Pk :(pﬁ 9p/§ 9"'71)?\'1 )T
and
I+#AZ‘A —1
—1I I+uAtA
M= )
1 I+unA
an

Then, we can represent (1b) as the following lin-

ear algebraic system:

MY ! = fi’ﬁk ,

7 18

M P! =Yt —y

Note that the matrix M given by (17) takes the
form of block circulant and therefore a p-cyclic
SOR (successive over-relaxation) iterative meth-
od " can be applied as an inner solver to handle
each of the two linear systems in (18), which
yields very efficient computation of the two sys-

tems in (18).

4 Numerical examples

In this section, we present numerical results
to validate the efficiency of the proposed iterative
algorithm in Section 3. For all numerical results,
the initial guess p° (x,¢) for the proposed algo-
rithm is chosen randomly under the periodic con-
dition and the zero boundary condition. We con-
sider the 1D case together with centered finite
difference discretization for the Laplacian. We use

the following data:

y(x,t) :ZSin<7txarcos( 1 tjtx) ) spu=1,
7=0.08,.T=2.5 (19
With this data, the solution of the optimality sys-

tem (12) y (x,t) (left subfigure) and p (x,t)
(right subfigure) is shown in Fig. 1.

p(z,t)

Fig. 1 Numerical solution of the optimality system (12) with the data given by (19)
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We now study whether or not the conver-
gence rate of the full discrete version of the pro-
posed iterative algorithm in Section 3 is robust
with respect to the discretization parametersAt
and Ax. In Fig. 2, we show the measured conver-

gence rates of the algorithm in two situations: in

. At = 0.02
10
- 1
—Ar=35
10” —o- Ar=4
o Ar=+
10 =0
5
Z 10
m
\
10" ¥
N
1070 23
N
107" =
2 4 6 8 10 12 14

Iteration Number i

the left subfigure we fix Az=0. 02 and choose for
Ax three values and in the right subfigure we fix
Axr=0. 025 and choose for Ar three values. In
both situations, we see clearly that the conver-
gence rate is insensitive to the change of Ax
and At.

Az = 0.025
0 -
10/ Af— 1
At = 155
/ 1
107 o A=
o At =5
10}
=
2
H10° N
N
8 R
10"
N
\
|l
10" \
\
R N
10" -
2 4 6 8 10 12 14
Iteration Number &

Fig. 2 Convergence rate of the iterative algorithm (18) with different space mesh size (left) and time step size (right)

5 Conclusions

We have proposed an iterative algorithm for
solving the optimal control problems with time-
periodic heat equations as the constraint. We first
derive the optimality system of such an optimal
control problem, which consists of two coupled
time-periodic heat equations. Then we apply the
Gauss-Seidel iteration to such an optimality sys-
tem, that is to say, we firstly solve the state e-
quation and then solve the co-state equation in an
iteration pattern. The full discrete version of the
proposed iterative algorithm is also presented.
Numerical results indicate that the proposed algo-
rithm possesses robust convergence rate with re-
spect to both the space and the time discretization

parameters.
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