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Abstract: In this article, based on Kronecker-Weber theorem we explicitly give a conductor formula for

the Abelian number fields based on the ramification indices. Particularly, the conductor of a quadratic

number field can be easily deduced from this formula.
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1 Introduction

An Abelian number field is a finite Galois ex-
tension over the rational number field whose Ga-
lois group is commutative. By Kronecker-Weber
theorem, there exists a cyclotomic field Q(¢, ),
such that KEQ(¢,,) for an Abelian number filed
K. The conductor of K, denoted by f(K), is the
smallest positive integer m satisfying the above
property. If m is odd, then we have Q(g,) =
Q(&,,). Hence F(K)#Z2(mod 4).

The conductor is an important arithmetic in-
variant of an Abelian number field. It is closely
related to the class number, the genus field, and
the discriminant of a number field and so on. For

example, Miki'" published some results on the
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conductor density of Abelian number fields,
Johnston'®! gave the trace map between absolutely
Abelian fields with the same conductor.

There are also some results on calculating
class numbers of Abelian number fields of special
conductor. For example, Schoof"* calculated class
numbers of Abelian number fields of prime con-
ductor, Agathocleous' calculated class numbers

of real cyclotomic fields of conductor pq.

For a quadraticfield Q(vd ), where d is a
square-free integer, we know that
|d| s if d=1(mod 1),
l4d |, if d#1(mod 4).

Generally, it is not easy to calculate the conduc-

HQ(/d)) =

tor. In 1952, Hasse® proved the conductor-dis-

criminant formula, which is very useful for com-
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puting the discriminant of an Abelian number
field. In 1985, Zhang'®' gave a result on the genus
field which is the maximal absolute Abelian num-
ber field containing the Abelian number field.
The aim of this article is to give an explicit formu-
la on conductor by some methods different from
Zhang.

Let p be a prime number, and we fix a prime
ideal p of K lying above p. Define

I,(K)={s€Gal(K/Q) |s(x)=x(mod p),

VaxeOx).

Since Gal(K/Q) is Abelian, I,(K) is independent
of the choice of p and hence well-defined. We call
I,(K) the inertia group of p in K, whose order is
called the ramification index of p in K, denoted
by e,(K). If ¢,(K) =1, p is said to be unramified
in K, otherwise we say p is ramified. The fixed
subfield of I,(K) in K. denote by K}, is the in-
ertial field of p. A basic fact is that p is unrami-
fied in K.

Theorem 1.1 Let K be an Abelian number
field of degree n. Write

n=2q1q? qy
where ¢, .q5 .+, q, are distinct odd primes, and ¢,
=0,t; =1 for 1<<i<<m. Let p;, ps =+, p, be all
ramified primes in K. For a prime p and an inte-
ger £, denote the standard p-adic order of k£ by v,
(k). Then we have

(1) If 2 is unramified in K, then

[(K) = b1 paeee PH g, (g, (KD
i=1
(i1) If 2 is ramified in K, then
jW.\'-N? ’ lf € (K( A/ 71 ) ) e (K) ’

f(K)=
12 W...» otherwise,

where

m
W,\.m — ZUZ(?Z(K)) pl Pz"' ])A Il q?‘li (k,[,(K)).
i=1

Remark 1 Zhang'®' gave a similar result for
an Abelian number field K of degree p", where p
is a prime number. But if p is ramified in K,
Zhang's result did not give the explicit power of p
in the conductor formula. In Ref. [7], Zhao and
Sun gave the conductor formula for an Abelian

number field of degree p, where p is a prime

number. This article generalizes the above two
conclusions. In our formula (Theorem 1. 1), we
give the explicit power of all primes which are
wildly ramified in K, where K is any Abelian
number field.

Let K, L and F be Abelian number fields
such that FEL, then we define

resk : Gal(L/Q)—>Gal(F/Q)o—>¢ | ¢ (D
where ¢| 5 (@) =6(a) (Va € F). Additionally, we
also define that

Qo(K,L):Gal(KL/Q)—

Gal(K/Q) ©Gal(L/Q) so—> (o |ks0 |1) (2)

Our proof depends on the explicit analysis of the
ramification index, and the key idea in our proof
is to determine the structure of the inertia groups
of an Abelian number field (Proposition 2. 1 and
Corollary 2. 2) by using Kronecker-Weber theo-
rem. In Section 2, we first deal with the case of a
cyclic number field of prime power degree (Prop-
osition 2. 6), which is the main part of our dis-
cussion. The general case is established in Section
3 by viewing an Abelian field as a compositum of

cyclic subfields of prime power degree.

2 Cyclicnumber fields of prime pow-
er degree

We start with a general result on the inertia
group. The following result shows that the iner-
tia group of a number field is determined by the
inertia group of its Galois extension.

Proposition 2.1 Let K and L be Abelian
number fields with K <=L. Then resk (I,(L)) =
I, (K) holds for every prime number p., where
resk is defined in Eq. (1).

Proof lLet p be a prime ideal in Ok lying a-
bove p. By the definition of inertia group, we
have resg (1,(L)) =I,(K).

Let B be a prime ideal in O, lying above p,
and I, (L) be the inertia group of p in L, then
I,(L) ={s€Gal(L/K) |o6(x) =x(mod L), ¥ x €
O, }. Thus

I,(L) NGal(L/K) =1I,(L).

Noticing that the restriction map resk is surjective

with ker (resk) =Gal(L/K), we have

031003-2
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1,(L) (I,(L) NGal(L/K)) =resk (I,(L)).

By the transitivity of ramification indices,

e, (K =L 11 (1) /(1 (L) NGal(L/K) |
ey (L)

=|resg (I,(L))].
Therefore resg (I, (L)) =1, (L). The proof
is end.

By using Proposition 2. 1 and Kronecker-We-
ber theorem, we can show that the inertia group
of an Abelian number field is determined by the
inertia group of a cyclotomic field.

Corollary 2.2 Let K be an Abelian number
field, and p be a prime number. Then the inertia
group I, (K) is isomorphic to a subgroup of
(Z/p"2) " for some r=0. In particular, e, (K) is
a power of 2, and I,(K) is cyclic if p is odd.

Proof Let {(K)=m, then K&Q({,). Fora
prime number p, write m = p’s with gcd(p,s) =
1, then Q&) =Q(&y)Q(& ), and p is unrami-
fied in Q (g ). Notice that Qq (K,L) defined in
Eq. (2) is a canonical embedding, thus Gal(KL/Q)
can be regarded as a subgroup of Gal(K/Q) ®Gal
(L/Q). By Proposition 2.1, we have

I, (Q(g.)) =resge, (1,(Q(E) ) D

resge (1, (Q(E,0)) =1, (Q(g,)) =
Gal(Q(¢y )/ Q) =(Z/p'L)".
That is, I, (K) =resf%’ (1,(Q(L,))) is isomor-
phic to a subgroup of (Z/p"Z)*.

If p is an odd prime, then (Z/p"Z)”" is cy-
clic, and consequently I,(K) is a cyclic group. I
p=2, (L/p"2)* is of order 27!, The proof
is end.

The main approach in this article is to usec-
ompositum of Abelian number fields to explore
the correlation between the conductor and the
ramification index. The following result shows
that the conductor of an Abelian field is deter-
mined by those of its subfields.

Lemma 2.3 Let K, and K, be two Abelian
number fields. Then

T-(KLKZ ) :lcm(f(Kl ) 9T~(K2 D).

In general,
F(K -+ K,) =lem(F(K;) -+, T(K,)).
Proof Let | (K,) =m,§ (K,) = m, and

f(KiK,)=n. Then m; | n and m, | n, thus
lem(m; smz) | n. On the other hand, we have

KiK; =Q( é’ml )Q( sz ) =Q( glcm(ml.mz) )
hence n << lem (m;,m;). This implies n =
lem (m, ,m; ), the first result is proved. On the
other hand, we also have that | (K, -+ K,) =
lem(F(K,), -, 1 (K,)) by induction. The proof
is end.

In the following, we concentrate on Abelian
number fields with prime power degree,

Lemma 2.4 Let p be a prime number, and
K be a cyclic number field of degree p". Assume
that ¢ is a prime number and ¢#p. Then we have

(i) The ramification index ¢,(K) | ¢—1;

(ii) Let L be the unique subfield of Q(g,)
with [L:Q] =e¢,(K). Then there is K' €KL in
which ¢ is unramified such that KL =K'L, and
every prime number that is different from p and
unramified in K is also unramified in K'.

Proof Notice that ¢, (K) is relatively prime
to q. The first part follows directly from Corol-
lary 2. 2 that ¢,(K) is a divisor of ¢! (¢—1) for
some r. Consequently, there is a unique subfield
L =Q(g,) such that [L:Q]=e¢,(K).

If ¢=2 or ¢ is unramified in K, then ¢,(K) =
1, and the second part is clear by taking K' =K.
So, we may assume ¢ is odd and ramifies in K.
Then I,(K) and I, (KL) are cyclic by Corollary
2.2, and I, (KL) is isomorphic to a cyclic sub-
group of I,(K) ®Gal(L/Q) via Qo (K,L) defined
in Eq. (2). Thus |[I,(KL)| is a divisor of
¢,(K). On the other hand,

I,(KL) | =] I,(K)| =e,(K)
by Proposition 2. 1. Therefore | I, (KL) | =e,(K).

Now, taking K" = (KL)!, we have [ KL:
K']=e¢,(K) and L N K" =Q. Thus q is totally
ramified in L and unramified in K" and

[K'L:Q]=[L:QJ[K":Q] =

[KL:K']J[K":Q]=[KL:Q].
It follows that K'L =KL. If p' # p is a prime

number that is unramified in K, then p’ #¢ and
p’ is unramified in L. Hence p" is unramified in
KL. In particular, p’ is unramified in K. The

proof is end.
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The following result can be proved in the
same way as the above lemma.
Lemma 2.5 Let p be a prime number, and
K be a cyclic number field of degree p". 1f ¢, (K)
#1, and L is an Abelian number field such that
e,(L)=e, (KL) =[L:Q].
then (KL),L =KL.
Proposition 2.6 Let p be a prime number,
and K be a cyclic number field of degree p". Let q
be a prime number that is ramified in K. Then
v, ((K)) =
1, if g#p;
v, (e, (K)) +1,if g=p is odd,
2, ifg=p=2, e, (K(/~1)) =2,
v, (e, (K)) +1, if g=p=2,
e (K(/—1)) =2.
Proof Let n=wv,((K)). Then {(K) =q"h
such that ged(g,h) =1.
Case 1 If ¢g#p, let L and K, be two Abe-

lian number fileds satisfying the properties in

Lemma 2. 4. Then we have

K\L=KL, (L) =q, q | (K)
and ¢/ {(K,). By Lemma 2. 3, we have

fF(KL) =lem(f(K),{(L)) =q"h,
and T(KiL) =lem(T(K;),T(L)) =¢f (K}).
It follows that n=1.

Case 2
in K with ramification index e, (K) = p" (u=1).
Since ¢, (K) | e, (Q(&uo)) and e, (Q(&i)) =
P (p—1), we have that n=u+1. Let L, be a
subfield of Q (&y+1) such that [L,:Q] = p“.
Then we obtain that

T(Ly) =p'' (K L) =T(KD.

Subcase 2.1 If pisodd, I,(KL;) is cyclic
by Corollary 2. 2. Notice that I, (KL,) can be
embedded as a subgroup of I, (K) ®@Gal (L, [Q)
via Qo (K,L,) defined in Eq. (2). But both I,
(K) and Gal(L, Q) are cyclic group of order p*,
and e, (KL;) = ¢, (K) = p“
e, (K L) =p".

Let K,=(KL,)j}. Since p is totally rami-
fiedin L, and [L,:Q]=e,(KL,), we have K;L, =
K L, by Lemma 2. 5. Since p is unramified in K, ,

If ¢g=p, we assume that p is ramified

It follows

we have p/ 1(K;). Thus

f(K,L,) :P”HT_(KZ ), T(K,L,) =f(K).
Consequently n=wv, ((K)) =u-+1.

Subcase 2.2 If g = p =2, then L, =Q
(&w1), thus we know that Gal (L;[Q) =
(7./2"' 7). Since (K L) =2"h, and the iner-
(Q(&m)) is  isomorphic to
(2/2"2)", I, (K L,) is isomorphic to a subgroup
of (Z/2"Z)*. Then I, (K L,) is cyclic or isomor-
phic to (Z/2"7)" for some 3<m<n.

(i) If I, (KL,) is cyclic, then Gal(L, | Q)
must be cyclic by Proposition 2. 1. Consequently

tia group I,

u=1, and ¢, (L;) =2. By Lemma 2. 5, we have
K,L, =KL, for K;=(KL;),. Notice
F(KLy)=1(K), T(K:L) =47 (K3).
Thus n=2.
() If I, (K L,) is isomorphic to (Z/2"Z)"*
for some 3<\m<n, then we obtain that
L, (KL,)=Z/22®Z1/2" *1.
Notice that resit (I, (K L,)) =1I,(K) is cyclic of
order 2, we have e, (KL,) =2""", m =u +2.
Let Ly =Q(&x2), then e(KL,)=2"" by Corol-
lary 2. 2. Setting K; =(KL,)!, we have K;L, =
K L, by Lemma 2. 5. Since | (K;L;) = 22
f(K5), we have {(KL,)=2"h. Thus n=u+2.
The above discussion shows that I, (K L,) is
cyclic if and only if e, (K(.,/—1)) =2. The proof

is end.

Let K be same as Proposition 2. 6, and we
+, p, are all prime numbers
If p. # p, then
v, (1(K)) =1, by Proposition 2. 6. If p is rami-

assume that p;, py, -

that are ramified in K.

fied or equivalently p, = p for some i, then
we have
v, (T(K)) =
v, (e, (K)) +1, if pis odd,
2, if p=2 , e (K(/ 1)) =2,
T,)(e,)(K)) +2,if p=2

e (K(/—1)) #2.
Thus
e, (KD prpa=ep,s il all p; #2,
2 prpepes if pr=2,
f[(K)=< e(K(/=1))=2,

2 e, (K)prpoep,» il p1 =2,
er (K(/—1)) #2.
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We summarize the result in the following
theorem.

Theorem 2.7 Let p be a prime number, and
K be a cyclic number field of degree p". Let p;,
D2ses P, be all primes which are ramified in K.
We have

(i) If 2 is unramified in K, then

F(K) =e, (KD pyp2+*pys

(ii) If 2 is ramified in K, then

J2p1-~-p.\», ife; (K(/—1)) =2,

f(KD) 1
2 preepre: (K), otherwise,

Based on the conductor formula in Theorem
2.7, we can easily compute the conductor of a
quadratic field.

Corollary 2. 8

ger, and K=Q(./4 ). Then

3 B ld| . if d=1(mod 1),
T(Q(ﬁ))_{w . if d#1 (mod 4).

Proof Letd= =+ p, p,-*p, be the prime de-

Let d be a square-free inte-

composition of d, and d (K) be the discriminant
of K. Then
|d|, if d=1(mod 4),
l4d |, if d#1(mod 4).
Notice that a prime numberp is ramified in K if
and only if p|d(K).
If d=1(mod 4), then 2 is unramified in K,
and pi, pos e
fied in K. By Theorem 2. 7, we have
FCK) =pipoeepn=1d]|.
If d=2(mod 4), then p;, ps, -
primes which are ramified in K. Since K(./—1)
has exactly three quadratic subfields: Q(./—1),

Q(/d) and Q(./—d ), in which 2 is ramified,
then e¢; (K(/—1)) =4. By Theorem 2. 7, we
have. {(K) =4|d]|.

If d=3(mod 4), then 2, p;,ps,+*. p,, are all
primes which are ramified in K. Since Q(/—d) &
K (,/—1) and 2 is unramified in Q(,/—4 ) » then
e, (K(/=1))=2. Again {(K) = |4d]|.

d(K):{

*, p,n are all primes which are rami-

s P are all

3 The conductor of general Abelian
number fields

In this section, we prove the main result for

general Abelian number fields.

Proof of Theorem 1.1 Let K be an Abelian
number field with Galois group G. By the struc-
ture theorem for finite Abelian groups, G is a di-
rect product of cyclic subgroups of prime power
order. For each such direct summand H of G,
there exists a subgroup H' such that G=H®H'.
Let M be the fixed field of H in K. We know
that M is Galois over Q and Gal (M/Q) is isomor-
phic to H. Hence M is cyclic number field of
prime power order. It follows that there exist cyclic
subfields K; of prime power order such that K =
K, K;-K.,.

of cyclic subfields of prime power degree.

In other words, K is a compositum

Let [K:Q]=2%q}q% g%, where q,q,,
-++,q, are distinct odd primes, and 7, =0,¢; =1 for
1<j<m. Then [ K;:Q] is a power of 2 or g;. Let
Prsposccs p, be all ramified primes in K. Then,
for each K;, pis pss -
prime divisors of {(K;). Notice that the transitiv-

-, p, are the only possible

ity of ramification index implies e, (K,) | e, (K)
for any prime integer p.

Case 1 If 2 is unramified in K, then e, (K) =
1, and all p, are odd. By Theorem 2.7, {(K,) is a
divisor of p; p; e piey, (KD for some j. In virtue of

Lemma 2. 3, we have

T | prpoees po [ g o .
j=1

Here v, (K) denotes the standard padic valuation
of k. Let L=Q(&w ), we have

K<L, e, (K) | e, (L.
If g; =p; for some i, due to Corollary 2. 2, I, (K)
is cyclic, hence

v, (e, (K)) <v, (e, (L)) =v, (1(K)) —1.
If g; # p; for all 7, then e, (K) =0. It follows

b poeee 1T @0 | TCKO.
i=1
Therefore,

F(K) = p1 poree PSH g o 5,
ji=1

Case 2
2.4, [ K:Q] must be even. Similarly, based on

Corollary 2. 2 and LLemma 2. 4, we have

If 2 is ramified in K, by Lemma

m
9 (e, (K)) preee pSH g (e (KD | F(K)
j=1

031003-5
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In particular, v, (f(K)) =wv, (e;(K)) + 1. By

Theorem 2. 7, we can assume that

- b, H g (L (K>)

where t =v, (e, (K)) or v, (@(K)) +1. We know
from Proposition 2. 1 that I, (K;) =resg (I,(K))
is always cyclic.

Subcase 2. 1
not cyclic, then 2 e, (K;) | e, (K) holds for all i.
On the other hand, Theorem 2. 7 implies

v, (T(K;)) <v, (e (K;)) +2.
Therefore, v, (T(K)) <, (e,(K)) + 1, which
forces t =wv, (e, (K)). Now

62(K(E))<€2(Q(§i(m)> -

e (K)<<e, (K(,/—1)).

Hence e, (K(,/—1)) =e;(K) and t =1, (e, (K)).

Subcase 2.2 If I, (K) is cyclic, we set L =
Q(&,) s where n=2 e, (K). Notice that I, (KL)
can be embedded as a subgroup of I, (K) ®Gal
(L/Q) via the canonical map Qo (K,L).

(1) If I, (KL) 1is cyclic, then I, (K) is cyclic
Thus e, (K) =2 and L =
Let K' =

I(K) =2 py por

If the inertia group I, (K) is

by Proposition 2. 1.
Q(./—1). Eventually e, (KL) = 2.
(KLY}, then K'L =KL and

T(K) =T(KL) =1(K'L) =4f(K").
Hence t =v, (e, (K) ) =1.

(i) If I, (KL) is not cyclic, then e, (KL) =
2 e; (K) by Corollary 2. 2. Thus

U2 (F(KL)) =v, (e, (K)) +2.

Therefore v, (1(K)) =v, (e, (K)) +2. Then we
have t =v, (e; (K) ) +1.

(iii) We next have a close analysis on the
(KL) is not
v, (e, (K)) =1, one must has

e (K(/—1)) >e: (K.

If v, (e, (K))>1, then we know that

K(/=1)=Kf(,/—1),

condition that I, cyclic. If

and I, (K®) is a cyclic group, where K® denotes
the maximal real subfield of K (,/—1). Thus
Qo (K®,Q(,/—1)) is an isomorphism, which in-
duces an isomorphism:

L(K(/=1))=L (K" @Gal(Q(/=1)Q/)
is not a cyclic group. Tt follows that I, (K(,/—1))
is not cyclic and

e (K) #e, (K(/—1)).
This shows that I, (KL) is not cyclic if and only
if e, (K(\/—1)) #e: (K.

In summary, if 2 is ramified in K, then

JW, ife; (K(,/—1)) =e:(K),

f(K) =
12 W.,...» otherwise,

where

m

W.\.m :sz (ey (K)) pl p2 ,._[)3 Hq}’qj (e([j (K)) X
=1

The proof is end.
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