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Abstract: Let n be a positive integer and a;,***,a, € Z. Schur proved that the polynomial 1 +a, x +
2 n—1 n
azJZL‘ +eeta, ﬁ Jra,,jl';' is irreducible over Q by using the factorization of prime ideal, where

a, = *1. Then Coleman reproved Schur's result by using the method of p-adic Newton polygon. In this

2 3
paper, we study the irreducibility of the generalized Schur-type polynomial 1 + x Jr% Jr% 4 eee

a

»
m. By using the tool of p-adic Newton polygon and applying the local-global principle, we

prove the irreducibility of this polynomial, where p is a prime number and «a is a positive integer.
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. the field of rational numbers respectively. The so-
1 Introduction b Y

called Schur-type polynomial is a polynomial f(x)
Let Z and Q denote the ring of integers and of the following form:
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flay=T1+aixtary; +o+

n—1 n

I
(n—1)! n!
where n€Z" and @, €Z. M a;, =1 for all 1<<i<n—

(L

Ap—1

.. . . x"
1 and the positive sign is taken for the term T

then (1) becomes the n-th truncated exponential
Taylor polynomial e, (17):=il.£;. In 1929, Schur
=011

proved that any Schur-type polynomial is irreduci-
ble over Q. He also computed the Galois group of

1 reproved Schur's result

e, (x) over Q. Coleman
by the p-adic Newton polygon. We call the fol-
lowing polynomial a generalized Schur-type poly-

nomial if it has the form

2
S(x) =1 +a11'+a2% Feee

n—1 n

X X
ay—1 (71_1)! +a”7’1! (2)

where a; €7 for 1<<i<<n. On the irreducibility of
(2), Filaseta'?! showed the following two results.

(1) If the leading coefficient of the general-
ized Schur-type polynomial (2) satisfies that 0 <C
la,| <n. then f(x) is irreducible over Q unless
a,==*15and n=6 or q, = £7 and n=10. In these
cases, either f(x) is irreducible or f(x) equals
to the product of two irreducible polynomials of
the same degree.

G If | a,

ble or f(x) is x =1 times an irreducible polyno-

=n, then either f(x)is irreduci-

mial of degree n—1.

Meanwhile, Filaseta™"

also do some extension o-
ver the result of Schur.

Naturally, we may ask about the irreducibili-
ty of other kinds of generalized Schur-type poly-
nomials. We may notice that given a; =1!, 1<G<<

n, we have some new polynomials such as
nt1 71

il .

simply know that f (x) is irreducible over the

X

f)=1+x+-+a"= In this case we

field of rational numbers Q if and only if n+1 is a
prime by the knowledge of cyclotomic field. An-
other example is that given a; = (i —1)!, (2) re-
covers the n-th truncated polynomial of the Tay-

lor expansion of 1 —log (1 —x) at the original

point. Monsef and coworkerst® proved that the

x

2
ble over Q and further computed the Galois group

polynomial L (x) =1+x+

.. .
+eee +7 is irreduci-
n

of L (x) for some special cases.
Motivated by these works, we in this paper

consider a generalized Schur-type polynomial

2 28 x
2 - 6 . Jrn(n*l)

by setting a; =1 and a; = (i —2)! for 2<<i<a.

fn(o)=1+a+

Since f, (x) =L, 1 (x), it is quite interesting to
discuss the irreducibility of this polynomial. In
fact, we obtain the following result.

Theorem 1. 1

ynomial £, (x) is irreducible over Q.

If n is a prime power, the pol-

This paper is organized as follows. We pres-
ent the definitions of p-adic valuation and p-adic
Newton polygon, and introduce the main theorem
of p-adic Newton polygon as well as some other
preliminary lemmas in Section 2. In Section 3, we
give the proof of Theorem 1. 1. Finally, Section 4

is devoted to some concluding remarks.

2 Preliminaries

In this section we give some definitions and
lemmas needed in the proof of Theorem 1. 1.
Definition 2.1 The p-adic valuation of an
integer m with respect to p, denoted by v, (m),
is defined as
max{k:p* | m}, m7#0,
v, (m) =
oo, m=0.
Clearly, we can extend Definition 2. 1 to the ra-
tional field Q and the local field Q,.
We recall the definition of p-adic Newton
polygons as follows,
Definition 2.2 The p-adic Newton polygon
NP, (f) of a polynomial f(x) = 2 ¢ xl €

J=0

Q[ x] is the lower convex hull of the set of points
S,(f)={(sv,(c;)) | 0<j<n}. It is the high-
est polygonal line passing on or below the points
in S, (f). The vertices (xo,y0)» (T1sy1)s ***s
(x,»y,) where the slope of the Newton polygon
changes are called the corners of N P, (f); their
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x-coordinates (0 =x, <<x; <<-++<x, =n) are called
the breaks of N P, (f); the lines connected two
vertices are called the segments of NP, (f).

For a given polynomial, by the definition of
lower convex hull, all points of S, (f) lies above
NP,(f). In other words, although S, (f) con-
tains all information of the coefficients of f(x),
NP, (f) reflects the arithmetic properties of all
roots of f(x) over the local field Q,.

We shall introduce the main theorem of the
p-adic Newton polygon below. This theorem pro-
vides a rough factorizationof f(x) over Q,.

Lemma 2. 3!
(z,.y,) denote the
NP, (f). Then there exist polynomials f,:*, f,
in Q,[ x ] such that

WD fe)=fi)fo(x)=f,(2);

(i1) The degree of f;is x; —xi—1;

Let (Iovy())» (-Tlvyl)a E)

successive vertices of

(iii) All the roots of f; in Q, have p-adic val-

yi 7,’)/171
X Xi—

uations —
The following lemma is a generalization of
the famous Eisenstein irreducibility criterion over
Q, . which provides an upper bound for the num-
ber of irreducible factors of a polynomial over Q,
according to its p-adic Newton polygon. For the
following lemma plays an important role in sup-
porting of Theorem 1. 1, we also give its proof in
this paper.
Lemma 2. 4/

be two consecutive vertices of N P, (f), and let

Let (1‘{—193/,'71) and (x,-,yi)

d; = ged (x; —xi-1sy; —yi—1). Then for each i,
fi(x) has at most d; irreducible factors in Q, and
the degree of the factors of f; (x) is a multiple of

1’771171 Particularly, if d; =1, then f;(x) is ir-

reducible over Q,.
Proof
By Lemma 2. 3, we have deg f; =u, and all the

Let x; —x;—y =u; and y; — y,—1 =

) . = . . V;
roots of f;(x) in Q, have p-adic valuation T

Let h (x) € Q,[x] with deg h (x) =t such that
h(x) | fi(x), and a;++**»a, be roots of h(x) in
Q,. Since 1(0) €Q,, we have

oy (1) =0, ((—1)'h (0)) €Z.
=
Noticing that for each 7 and j, we have v, (¢;) =

—1v;

Therefore, we derive that e Z.

Up (0(_7' ).

Since ged (u;»v;) =d;» one writes u; =u'.d;sv; =
v.d;s where ged (. ,v. ) =1. It follows that «. | ¢,
and one claims that the degree of every factor of
f:(x) is a multiple of «.. Since u; =u'd;, it fol-
lows that f;(x) has at most d; irreducible factors
in Q,. This finishes the proof of Lemma 2. 4.

We also need the following lemma which give
a result of the existence of prime number between
two real numbers,

Lemma 2. 5"/ There exists a prime p satis-

fying x<<p <%x for real number x=>25.

Lemma 2.6 For any real number x > 6,
there exist distinct primes p; and p, satisfying that
lx <o <ax+F1<p, <p, <2 x |<2x (%)
Proof The proof of Lemma 2. 6 is divided
into the following two cases.

Case 1 x>=25. By Lemma 2. 5, there exist

primes p; and p, satisfying that o <<p, <%1‘ <

b2 <%§x <2x. The statement is true for this case.

Case 2 6<<x<(25. We can check that there
exist two different prime numbers p, and p, satis-
fying that | x |<<p; <<p, <2| 2 |. Since the ine-
quality ( %) holds, it follows that Lemma 2. 6 al-
so holds for real number x satisfying 6 <<x <25.
The statement is true for this case. This com-

pletes the proof.

3 Proof of Theorem 1.1

We first consider the cases that n<C12. For
the cases n=2,3,5,7,11, one can check the con-
clusion of the theorem via Eisenstein criterion di-
rectly.

It follows that f, (x) =F, (x) F, (x) in Q;,
where deg F', (x) =3 and deg F, (x) =1, by Lem-
ma 2.4, we have both F;, (x) and F, (x) are irre-
ducible over Q;. Then consider the 2-adic Newton
(0,0),

polygon of f, (x). its vertices are
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(4, —2). Hence we have either f, (x) is irreduc-
ible over Q; or f, (x) =G, (2)G; (x) over Q, with
deg G, (x) =deg G; (x) =2 by Lemma 2. 4. If
f1(ax) is reducible over Q, it leads a contradiction
with the factorization of f, (x) over the local field
Q. and Q; by local-global principle. It follows that
Theorem 1. 1 is true for n=4. Similarly, we take
the 2-adic and 7-adic Newton polygon into account
for fs (x). For fy (x), we consider the 3-adic
and 7-adic Newton polygon. By the same argu-
ment as in the case n=4, we can always arrive at
a contradiction by local-global principle. We o-
mitted the tedious details here.

Now we may assume that n=>12. We first
prove that if f, (x) is reducible over Q, then one
has f,(x) =(x+a)g (x), where a is a rational
number. Since n>>12, by Lemma 2. 6, there exist

distinct prime numbers p, and p, satisfying that
%<p1 < py, <n. Consequently, we consider the

factorization of f, (x) in the local field Q. The
pi—adic Newton polygon of f, (x) has vertices
(0,00, (p1s =)y (pr +1,—1),(n,0). By (D) of
Lemma 2. 3 and Lemma 2. 4, we have f, (z) =
(x+a)Fy (x)F, (x) in Q, » where F, (x) and
F, (x) are both irreducible over Q, with

deg F, (x) =p,, deg Fy (x) =n—p; —1.
Similarly, the vertices of the p,-adic Newton pol-
ygon of f, (x) are given by (0,0), (p;,—1),
(p:+1,—1),(n,0). By (i) of Lemma 2. 3 and
Lemma 2. 4 again, one has

fo () =(x+a)G ()G (2)
in Q,, » where G, (x) and G, (x) are both irreduc-
ible over Q,, with deg G, (x) = p, and deg G,
(x)=n—p, —1. If f, (x) is reducible over Q,
the local-global principle implies that f, (x) has
at most 3 factors in Q. Clearly, f,(x) can’t have
exactly 3 factors in Q, otherwise the factorization
of f, (x) in the local field Q, and Q,, can’t coin-
cide. Hence, we have the factorization f, (zx) =
g(x)h(x) in Q, where both g(x) and h(x) are
irreducible over Q.

Without loss of generality, it is natural for

us to assume that degg (x) <n/2. Noticing that

6<n/2<<p, <p, <n, we have p; +1<p,. By lo-
cal-global principle, if f, (x) is reducible over Q,
it admits a factor whose degree is greater than or
equal to p;. Since f, (x) =(x+tay)F, (x)F; (x)
inQ, » fu(x)=g(x)h(x) inQ and

deg F, (x) <<deg F; (x) =p1 <p1 +1<ps .,
by comparing the degree of the polynomials
fu(z) in Q and Q, . it follows that 2 (z) =
F, (2)F; (x), which implies that deg g (x) =1.
This proves that f, (x) = (x+a)g (x) as de-
sired.

In what follows, we prove that such linear
factor doesn't exist. Since n is a prime power, we
may let n=p’, where p is a prime number and f
is a positive integer. The p-adic Newton polygon
of f,(x) has vertices

(0,00, (ps =Dy s (pls =y p#2,
(0,00, (4, —2),.... 2/, =), p=2.
If p#2, then by (1) of Lemma 2. 3 and Lem-

ma 2. 4, we have f, (x) :_legi (x), where g, (x)

are irreducible over Q, with deg g, () =p and
deg gi(x)=p —p" 'y i=2,, f.

It follows that f,(x) can’t have a linear factor in

Q,. Furtherly, by local-global principle f, (z)

can’'t have a linear factor in Q either.

If p=2, by () of Lemma 2. 3 and Lemma
2.4, we have f, () :]jlgl- (x), where g ()

has at most two irreducible factors in Q, and the
degree of each factor of g, (x) is greater than or
equal to 2. For i=2,++, f, g;(x) are irreducible
over Q, and deg g, (x) =2" —27'. Thus f, (x)
can’'t be with a linear factor in Q,. This finishes

the proof of Theorem 1. 1.

4 Conclusions

In this paper we have studied the irreducibili-
ty of a class of generalized Schur-type polynomial
(2) with a; =1 and a; = (i —2)! for 2<i<n=
p*. By introducing the tool of p-adic Newton pol-
ygon and local-global principle, the irreducibility
of the polynomial over Q was given. Here we
point out that one can characterize the irreducibil-

ity and other properties of some more generalized
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Schur-type polynomials by relaxing the restric-

tions on coefficients of the polynomial (2).
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