一类广义 Schur 型多项式的不可约性

尹轩睿1,2,吴荣军3,朱光艳4

(1. 四川大学数学学院,成都 610064; 2. 成都市第七中学,成都 610000;

3. 西南民族大学数学学院,成都 610041; 4. 湖北民族大学教师教育学院,恩施 445000)

摘 要:设 n 为一个正整数, a_1 ,…, a_n 均为整数. Schur 通过素理想分解证明:当 $a_n = \pm 1$ 时,多项式 $1 + a_1 x + a_2 \frac{x^2}{2!} + \cdots + a_{n-1} \frac{x^{n-1}}{(n-1)!} + a_n \frac{x^n}{n!}$ 是不可约多项式. 随后,Coleman 利用 p-adic Newton 多边形重新证明了 Schur 的结果. 本文研究了一类特殊的广义 Schur 型多项式 $1+x+\frac{x^2}{2} + \frac{x^3}{6} + \cdots + \frac{x^{p^a}}{p^a(p^a-1)}$ 的不可约性. 借助 p-adic Newton 多边形工具,本文基于局部整体原则证明:当 p 为素数,a 为正整数时该多项式在有理数域上不可约.

关键词: 不可约; p-adic 牛顿多边形; 局部整体原则

中图分类号: O156.2

文献标识码: A

DOI: 10. 19907/j. 0490-6756, 2023, 031004

On the irreducibility of a class of generalized Schur-type polynomials

YIN Xuan-Rui^{1,2}, WU Rong-Jun³, ZHU Guang-Yan⁴

(1. School of Mathematics, Sichuan University, Chengdu 610064, China;

2. Chengdu No. 7 High School, Chengdu 610000, China;

- 3. School of Mathematics, Southwest Minzu University, Chengdu 610041, China;
- 4. School of Teacher Education, Hubei Minzu University, Enshi 445000, China)

Abstract: Let n be a positive integer and $a_1, \dots, a_n \in \mathbb{Z}$. Schur proved that the polynomial $1 + a_1 x + a_2 \frac{x^2}{2!} + \dots + a_{n-1} \frac{x^{n-1}}{(n-1)!} + a_n \frac{x^n}{n!}$ is irreducible over \mathbb{Q} by using the factorization of prime ideal, where $a_n = \pm 1$. Then Coleman reproved Schur's result by using the method of p-adic Newton polygon. In this paper, we study the irreducibility of the generalized Schur-type polynomial $1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^{p^a}}{p^a(p^a-1)}$. By using the tool of p-adic Newton polygon and applying the local-global principle, we prove the irreducibility of this polynomial, where p is a prime number and a is a positive integer. **Keywords**: Irreducibility; p-adic Newton polygon; Local-global principle (2000 MSC 11R09, 11R04)

1 Introduction

Let **Z** and **Q** denote the ring of integers and

the field of rational numbers respectively. The socalled Schur-type polynomial is a polynomial f(x)of the following form:

收稿日期: 2022-03-24

基金项目: 西南民族大学科研启动金资助项目(RQD2021100);四川省自然科学基金(2022NSFSC1830)

作者简介: 尹轩睿, 男, 山西太原人, 硕士研究生, 主要研究方向为数论. E-mail: 434307608@qq. com

通讯作者: 吴荣军. E-mail: eugen_woo@163.com

$$f(x) := 1 + a_1 x + a_2 \frac{x^2}{2!} + \dots + a_{n-1} \frac{x^{n-1}}{(n-1)!} \pm \frac{x^n}{n!}$$
 (1)

where $n \in \mathbb{Z}^+$ and $a_i \in \mathbb{Z}$. If $a_i = 1$ for all $1 \le i \le n - 1$ and the positive sign is taken for the term $\frac{x^n}{n!}$, then (1) becomes the n-th truncated exponential Taylor polynomial $e_n(x) := \sum_{i=0}^n \frac{x^i}{i!}$. In 1929, Schur proved that any Schur-type polynomial is irreducible over \mathbb{Q} . He also computed the Galois group of $e_n(x)$ over \mathbb{Q} . Coleman^[1] reproved Schur's result by the p-adic Newton polygon. We call the following polynomial a generalized Schur-type polynomial if it has the form

$$f(x) = 1 + a_1 x + a_2 \frac{x^2}{2!} + \dots + a_{n-1} \frac{x^{n-1}}{(n-1)!} + a_n \frac{x^n}{n!}$$
 (2)

where $a_i \in \mathbb{Z}$ for $1 \leq i \leq n$. On the irreducibility of (2), Filaseta^[2] showed the following two results.

- (i) If the leading coefficient of the generalized Schur-type polynomial (2) satisfies that $0 < |a_n| < n$, then f(x) is irreducible over \mathbf{Q} unless $a_n = \pm 5$ and n = 6 or $a_n = \pm 7$ and n = 10. In these cases, either f(x) is irreducible or f(x) equals to the product of two irreducible polynomials of the same degree.
- (ii) If $|a_n| = n$, then either f(x) is irreducible or f(x) is $x \pm 1$ times an irreducible polynomial of degree n-1.

Meanwhile, Filaseta^[3-5] also do some extension over the result of Schur.

Naturally, we may ask about the irreducibility of other kinds of generalized Schur-type polynomials. We may notice that given $a_i = i!$, $1 \le i \le n$, we have some new polynomials such as $f(x) = 1 + x + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$. In this case we simply know that f(x) is irreducible over the field of rational numbers \mathbf{Q} if and only if n+1 is a prime by the knowledge of cyclotomic field. Another example is that given $a_i = (i-1)!$, (2) recovers the n-th truncated polynomial of the Taylor expansion of $1 - \log(1-x)$ at the original

point. Monsef and coworkers^[6] proved that the polynomial $L(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n}$ is irreducible over **Q** and further computed the Galois group of L(x) for some special cases.

Motivated by these works, we in this paper consider a generalized Schur-type polynomial

$$f_n(x) := 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n(n-1)}$$

by setting $a_1 = 1$ and $a_i = (i-2)!$ for $2 \le i \le n$. Since $f'_n(x) = L_{n-1}(x)$, it is quite interesting to discuss the irreducibility of this polynomial. In fact, we obtain the following result.

Theorem 1.1 If n is a prime power, the polynomial $f_n(x)$ is irreducible over **Q**.

This paper is organized as follows. We present the definitions of p-adic valuation and p-adic Newton polygon, and introduce the main theorem of p-adic Newton polygon as well as some other preliminary lemmas in Section 2. In Section 3, we give the proof of Theorem 1. 1. Finally, Section 4 is devoted to some concluding remarks.

2 Preliminaries

In this section we give some definitions and lemmas needed in the proof of Theorem 1.1.

Definition 2.1 The *p*-adic valuation of an integer m with respect to p, denoted by $v_p(m)$, is defined as

$$v_p(m) = \begin{cases} \max\{k: p^k \mid m\}, & m \neq 0, \\ \infty, & m = 0. \end{cases}$$

Clearly, we can extend Definition 2. 1 to the rational field \mathbf{Q} and the local field \mathbf{Q}_{p} .

We recall the definition of *p*-adic Newton polygons as follows.

Definition 2.2 The *p*-adic Newton polygon $NP_p(f)$ of a polynomial $f(x) = \sum_{j=0}^n c_j x^j \in \mathbb{R}$

Q[x] is the lower convex hull of the set of points $S_p(f) = \{(j, v_p(c_j)) \mid 0 \le j \le n\}$. It is the highest polygonal line passing on or below the points in $S_p(f)$. The vertices $(x_0, y_0), (x_1, y_1), \cdots, (x_r, y_r)$ where the slope of the Newton polygon

changes are called the corners of $NP_{p}(f)$; their

x-coordinates $(0 = x_0 < x_1 < \cdots < x_r = n)$ are called the breaks of $NP_p(f)$; the lines connected two vertices are called the segments of $NP_p(f)$.

For a given polynomial, by the definition of lower convex hull, all points of $S_p(f)$ lies above $NP_p(f)$. In other words, although $S_p(f)$ contains all information of the coefficients of f(x), $NP_p(f)$ reflects the arithmetic properties of all roots of f(x) over the local field \mathbf{Q}_p .

We shall introduce the main theorem of the p-adic Newton polygon below. This theorem provides a rough factorization of f(x) over \mathbf{Q}_p .

Lemma 2. 3^[7] Let $(x_0, y_0), (x_1, y_1), \cdots, (x_r, y_r)$ denote the successive vertices of $NP_p(f)$. Then there exist polynomials f_1, \cdots, f_r in $\mathbf{Q}_p[x]$ such that

- (i) $f(x) = f_1(x)f_2(x) \cdots f_r(x)$;
- (ii) The degree of f_i is $x_i x_{i-1}$;
- (iii) All the roots of f_i in $\overline{\mathbf{Q}}_p$ have p-adic valuations $-\frac{y_i-y_{i-1}}{x_i-x_{i-1}}$.

The following lemma is a generalization of the famous Eisenstein irreducibility criterion over \mathbf{Q}_p , which provides an upper bound for the number of irreducible factors of a polynomial over \mathbf{Q}_p according to its p-adic Newton polygon. For the following lemma plays an important role in supporting of Theorem 1.1, we also give its proof in this paper.

Lemma 2. 4^[8] Let (x_{i-1}, y_{i-1}) and (x_i, y_i) be two consecutive vertices of $NP_p(f)$, and let $d_i = \gcd(x_i - x_{i-1}, y_i - y_{i-1})$. Then for each i, $f_i(x)$ has at most d_i irreducible factors in \mathbf{Q}_p and the degree of the factors of $f_i(x)$ is a multiple of $\frac{x_i - x_{i-1}}{d_i}$. Particularly, if $d_i = 1$, then $f_i(x)$ is irreducible over \mathbf{Q}_p .

Proof Let $x_i - x_{i-1} = u_i$ and $y_i - y_{i-1} = v_i$. By Lemma 2. 3, we have deg $f_i = u_i$ and all the roots of $f_i(x)$ in $\overline{\mathbf{Q}}_p$ have p-adic valuation $-\frac{v_i}{u_i}$. Let $h(x) \in \mathbf{Q}_p[x]$ with deg h(x) = t such that $h(x) \mid f_i(x)$, and $\alpha_1, \dots, \alpha_t$ be roots of h(x) in $\overline{\mathbf{Q}}_p$. Since $h(0) \in \mathbf{Q}_p$, we have

$$v_p\left(\prod_{j=1}^t \alpha_j\right) = v_p\left(\left(-1\right)^t h\left(0\right)\right) \in \mathbf{Z}.$$

Noticing that for each i and j, we have $v_p(\alpha_i) = v_p(\alpha_j)$. Therefore, we derive that $\frac{-t v_i}{u_i} \in \mathbf{Z}$. Since $\gcd(u_i, v_i) = d_i$, one writes $u_i = u_i' d_i$, $v_i = v_i' d_i$, where $\gcd(u_i', v_i') = 1$. It follows that $u_i' \mid t$, and one claims that the degree of every factor of $f_i(x)$ is a multiple of u_i' . Since $u_i = u_i' d_i$, it follows that $f_i(x)$ has at most d_i irreducible factors in \mathbf{Q}_p . This finishes the proof of Lemma 2.4.

We also need the following lemma which give a result of the existence of prime number between two real numbers.

Lemma 2. 5[9] There exists a prime p satisfying $x for real number <math>x \ge 25$.

Lemma 2.6 For any real number x > 6, there exist distinct primes p_1 and p_2 satisfying that

Proof The proof of Lemma 2. 6 is divided into the following two cases.

Case 1 $x \ge 25$. By Lemma 2.5, there exist primes p_1 and p_2 satisfying that $x < p_1 < \frac{6}{5}x <$

 $p_2 < \frac{36}{25}x < 2x$. The statement is true for this case.

Case 2 6 < x < 25. We can check that there exist two different prime numbers p_1 and p_2 satisfying that $\lfloor x \rfloor < p_1 < p_2 < 2 \lfloor x \rfloor$. Since the inequality (*) holds, it follows that Lemma 2.6 also holds for real number x satisfying 6 < x < 25. The statement is true for this case. This completes the proof.

3 Proof of Theorem 1.1

We first consider the cases that n < 12. For the cases n = 2, 3, 5, 7, 11, one can check the conclusion of the theorem via Eisenstein criterion directly.

It follows that $f_4(x) = F_1(x) F_2(x)$ in \mathbf{Q}_3 , where deg $F_1(x) = 3$ and deg $F_2(x) = 1$, by Lemma 2.4, we have both $F_1(x)$ and $F_2(x)$ are irreducible over \mathbf{Q}_3 . Then consider the 2-adic Newton polygon of $f_4(x)$, its vertices are (0,0),

(4,-2). Hence we have either $f_4(x)$ is irreducible over \mathbf{Q}_2 or $f_4(x) = G_1(x)G_2(x)$ over \mathbf{Q}_2 with deg $G_1(x) = \deg G_2(x) = 2$ by Lemma 2. 4. If $f_4(x)$ is reducible over \mathbf{Q}_2 , it leads a contradiction with the factorization of $f_4(x)$ over the local field \mathbf{Q}_2 and \mathbf{Q}_3 by local-global principle. It follows that Theorem 1. 1 is true for n=4. Similarly, we take the 2-adic and 7-adic Newton polygon into account for $f_8(x)$. For $f_9(x)$, we consider the 3-adic and 7-adic Newton polygon. By the same argument as in the case n=4, we can always arrive at a contradiction by local-global principle. We omitted the tedious details here.

Now we may assume that $n \ge 12$. We first prove that if $f_n(x)$ is reducible over \mathbf{Q} , then one has $f_n(x) = (x+a)g(x)$, where a is a rational number. Since n > 12, by Lemma 2. 6, there exist distinct prime numbers p_1 and p_2 satisfying that $\frac{n}{2} < p_1 < p_2 < n$. Consequently, we consider the factorization of $f_n(x)$ in the local field \mathbf{Q}_{p_1} . The p_1 -adic Newton polygon of $f_n(x)$ has vertices $(0,0), (p_1,-1), (p_1+1,-1), (n,0)$. By (i) of Lemma 2. 3 and Lemma 2. 4, we have $f_n(x) = (x+a_0)F_1(x)F_2(x)$ in \mathbf{Q}_{p_1} , where $F_1(x)$ and $F_2(x)$ are both irreducible over \mathbf{Q}_{p_1} with

deg $F_1(x) = p_1$, deg $F_2(x) = n - p_1 - 1$. Similarly, the vertices of the p_2 -adic Newton polygon of $f_n(x)$ are given by (0,0), $(p_2,-1)$, $(p_2+1,-1)$, (n,0). By (i) of Lemma 2. 3 and Lemma 2. 4 again, one has

$$f_n(x) = (x+a_1)G_1(x)G_2(x)$$

in \mathbf{Q}_{p_2} , where $G_1(x)$ and $G_2(x)$ are both irreducible over \mathbf{Q}_{p_2} with deg $G_1(x) = p_2$ and deg $G_2(x) = n - p_2 - 1$. If $f_n(x)$ is reducible over \mathbf{Q} , the local-global principle implies that $f_n(x)$ has at most 3 factors in \mathbf{Q} . Clearly, $f_n(x)$ can't have exactly 3 factors in \mathbf{Q} , otherwise the factorization of $f_n(x)$ in the local field \mathbf{Q}_{p_1} and \mathbf{Q}_{p_2} can't coincide. Hence, we have the factorization $f_n(x) = g(x)h(x)$ in \mathbf{Q} , where both g(x) and h(x) are irreducible over \mathbf{Q} .

Without loss of generality, it is natural for us to assume that $\deg g(x) \leq n/2$. Noticing that

 $6 \le n/2 < p_1 < p_2 < n$, we have $p_1 + 1 < p_2$. By local-global principle, if $f_n(x)$ is reducible over \mathbf{Q} , it admits a factor whose degree is greater than or equal to p_2 . Since $f_n(x) = (x+a_0)F_1(x)F_2(x)$ in \mathbf{Q}_{p_1} , $f_n(x) = g(x)h(x)$ in \mathbf{Q} and

deg $F_2(x)$ < deg $F_1(x) = p_1 < p_1 + 1 < p_2$, by comparing the degree of the polynomials $f_n(x)$ in \mathbf{Q} and \mathbf{Q}_{p_1} , it follows that $h(x) = F_1(x)F_2(x)$, which implies that deg g(x) = 1. This proves that $f_n(x) = (x+a)g(x)$ as desired.

In what follows, we prove that such linear factor doesn't exist. Since n is a prime power, we may let $n = p^f$, where p is a prime number and f is a positive integer. The p-adic Newton polygon of $f_n(x)$ has vertices

$$\begin{cases} (0,0), (p,-1), \dots, (p^f,-f), p \neq 2, \\ (0,0), (4,-2), \dots, (2^f,-f), p = 2. \end{cases}$$

If $p\neq 2$, then by (i) of Lemma 2. 3 and Lemma 2. 4, we have $f_n(x) = \prod_{i=1}^f g_i(x)$, where $g_i(x)$ are irreducible over \mathbf{Q}_p with deg $g_1(x) = p$ and

$$\deg g_i(x) = p^i - p^{i-1}, i = 2, \dots, f.$$

It follows that $f_n(x)$ can't have a linear factor in \mathbf{Q}_p . Furtherly, by local-global principle $f_n(x)$ can't have a linear factor in \mathbf{Q} either.

If p=2, by (i) of Lemma 2. 3 and Lemma 2. 4, we have $f_n(x)=\prod_{i=1}^f g_i(x)$, where $g_1(x)$ has at most two irreducible factors in \mathbf{Q}_2 and the degree of each factor of $g_1(x)$ is greater than or equal to 2. For $i=2,\dots,f$, $g_i(x)$ are irreducible over \mathbf{Q}_2 and deg $g_i(x)=2^i-2^{i-1}$. Thus $f_n(x)$ can't be with a linear factor in \mathbf{Q}_2 . This finishes the proof of Theorem 1. 1.

4 Conclusions

In this paper we have studied the irreducibility of a class of generalized Schur-type polynomial (2) with $a_1 = 1$ and $a_i = (i-2)!$ for $2 \le i \le n = p^a$. By introducing the tool of p-adic Newton polygon and local-global principle, the irreducibility of the polynomial over \mathbf{Q} was given. Here we point out that one can characterize the irreducibility and other properties of some more generalized

Schur-type polynomials by relaxing the restrictions on coefficients of the polynomial (2).

References:

- [1] Coleman R F. On the Galois groups of the exponential Taylor polynomials [J]. Enseign Math, 1987, 33: 183.
- [2] Filaseta M. A generalization of an irreducibility theorem of I. Schur [M]. Boston: Birkhäuser, 1996.
- [3] Filaseta M. On an irreducibility theorem of I. Schur [J]. Acta Arith, 1991, 58; 251.
- [4] Allen M, Filaseta M. A generalization of a third irreducibility theorem of I. Schur [J]. Acta Arith, 2004, 114: 183.

- [5] Allen M, Filaseta M. A generalization of a second irreducibility theorem of I. Schur [J]. Acta Arith, 2003, 109: 65.
- [6] Monsef K, Shaffaf J, Taleb R. The Galois groups of the Taylor polynomials of some elementary functions [J]. Int J Number Theory, 2019, 15: 1127.
- [7] Koblitz N. p-Adic numbers, p-adic analysis, and Zeta-functions [M]. Berlin: Springer-Verlag, 1984.
- [8] Ao L F, Hong S F. On the Galois group of three classes of trinomials [J]. AIMS Math, 2022, 7: 212.
- [9] Harborth H, Kemnitz A. Calculations for Bertrands postulate [J]. Math Mag, 1981, 54: 33.

引用本文格式:

中 文: 尹轩睿, 吴荣军, 朱光艳. 一类广义 Schur 型多项式的不可约性[J]. 四川大学学报:自然科学版, 2023, 60: 031004.

英文: Yin X R, Wu R J, Zhu G Y. On the irreducibility of a class of generalized Schur-type polynomials [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 031004.