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New explicit solutions for nonlinear fractional Klein-Gordon equation
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Abstract: By using the fractional complex transformation, the nonlinear fractional Klein-Gordon equa-
tion is converted to a nonlinear ordinary differential equation. Then we apply the extended (G'/G)-ex-
pansion method to construct the exact solutions of the equation. Moreover, a series new explicit solu-
tions are obtained, which include hyperbolic function,trigonometric and negative exponential solutions.
Keywords: Explicit solutions; Nonlinear f{ractional Klein-Gordon equation; Extended (G'/G)-
expansion method
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. function method™*, the fractional first integral
1 Introduction . , ,
method™ ™ and the fractional sub-equation meth-

Fractional differential equations are generali-
zations of classical differential equations integer
order. Many important phenomena in plasma, op-
tical fibers,fluid dynamics,electromagnetic and a-
coustics are well described by fractional differen-
tial equations. The fractional differential equations

have been investigated by many researcherst' ™

.In
recent years, a variety of powerful methods have
been introduced by some scientists to construct

exact solutions. For example, the fractional exp-
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od,

Lately, Wang et al.™ introduced a new aux-
iliary equation method, called (G'/G)-expansion
method, which is a powerful method for seeking
the solutions of nonlinear partial differential equa-
tions. In this method, the second order linear ordi-
nary differential equation G" +2G" + 4G = 0is exe-
cuted. Shehatat'® also presented an modified (G'/
G)-expansion method, which add negative power

exponent to seek more general traveling wave so-
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lutions. In this paper, we obtain abundant solu-
tions method by using the improved (G'/G)-ex-
pansion method.

Jumariet'! proposed a modified Riemann-Li-
ouville derivative. Then, we give some definitions
and properties of this modified Riemann-Liouville
derivative. The Jumarie’s modified Riemann-Li-
ouville derivative of order « is defined by the fol-
lowing expression:

Dif(o) =

1 d (" o
mgﬁ) (t =& (f& — f0))ds,
(D

0 < a < 1a
(fraN“”n<a<n+l,n=>1
Some important properties of Jumarie's derivatiive

are:
T+y -
(l+y—a
Di(f(Dg))=g(ODsf () +f()Dig () (3)
Diflg(]=fLlg®]Dig(t) =
Diflg(o) (g’ ())e 4

12,13]

Dif(= (2

In other way,the Klein-Gordon equation"
is an important nonlinear partial differential equa-
tion arising in relativistic quantum mechanics and
quantum field theory,which is also used to model
many types of phenomena.,including the propaga-
tion of dislocations in crystals and the behavior of
elementary particles. Particularly, it is very inter-
esting to study the nonlinear partial differential
Klein-Gordon equation of fractional order! %7,

2 2 .
ulz,t) _ ulat) gy +
dtee dx*

92“3(19[)9[>OQO <0(§1 (5)

where 0, and @, are arbitrary constants and « is a

parameter describing the order of the fractional

/ [14]

time derivative. Taghizadel ez a used the sim-

plest auxiliary equation to solve (5) and obtained

5] investigated

hyperbolic function solutions, Lu
via first integral method. In this paper,we will ap-
ply improved (G'/G)-expansion method to con-
struct exact solutions of (5) in the sense of modi-

fied Riemann-Liouville derivative.

2 The improved (G’/G)-expansion
method

Let us consider a general fractional partial

differential equation:

Plusu, su,sDusDuy)=0,0<g<1 (6)
where Du and Dfu are Jumarie’s modified Rie-
mann-Liouville derivatives of u(x,2),P is a poly-
nomial in u(x,#) and its various partial derivatives
including fractional derivatives in which the high-
est order derivatives and nonlinear terms are in-
volved.

Step 1. Li and He!'" proposed a fractional
complex transform to convert fractional differen-
tial equation into ordinary differential equation.
Therefore, we can easily construct the solutions of
fractional differential equation. With fractional
complex transform, we can easily convert fraction-
al partial differential equation to ordinary differ-
ential equation. By the fractional complex trans-
formation

c
— tﬂ
(1l +a)

where [ and ¢ are non zero arbitrary constants with

ulx,t) = u(8, 6 =Ix 7

¢ #0, we can reduce (6) to an ordinary differenti-
al equation of integer order in the form of

PCusu' su"su” o) =0 (8)
where the superscripts and the ordinary deriva-
tives are taken with respect to & If possible, we
should integrate (8) term by term one or more
times.

Step 2. Assume that the solution of (8) can be
expressed as a polynomial of (G'/G) in the form of

' _ m ‘ Q’ m » g —i
u(&) Za,<G> +;b,(G) 9

i=0
am) b (1 =1,

stants, G = G(§&) satisfies the following nonlinear

where a; (i =0,1, - ,m) are con-
ordinary differential equation:

G'G = B(G")* +(GG" + EG* (10)
where the prime denotes derivative with respect
to &,B,C and E are real parameters.

Step 3. To determine the positive integer m,
taking the homogeneous balance between the
highest order nonlinear terms and the highest or-
der derivatives appearing in (8).

Step 4. Substituting (9) and (10) into (8),

with the value of m obtained in Step 3, we obtain

N oom S —m

)" (m =01, and <g> (m

polynomials in (
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=1,2, ). Then, collect each coefficient of the
resulted polynomials to zero yields a set of alge-
braic equations for a; (i =0,1,2,,m),b; (i =1,
2,++,m),l and c.

Step 5. Suppose that the value of the con-
stants @; (i =0,1,2,.m) b, (i=1,2,++,m) can
be found by solving the algebraic equations which
are obtained in Step 4. Since the general solution
of (10) is well known to us,substituting the val-
ues of ¢; (i =0,1,2,++,m),b; (i1 =1,2,

(9), we obtain more general type and new exact

c=s,m) Into

traveling wave solutions of the nonlinear partial
differential (6).

3 Applications

Now, Substituting the wave transformation
(7) into (5) we have

(2 —Hd +0u+0,4 =0 an
By Balancing the order between the highest order
derivative term and nonlinear term in (11). we can

obtainm = 1. So we have

G | !
5)
By using (10) from (9) we have

(8 =a1(%) Yay b (12)

u = a?(%)?) +3aoaf(%)2 + (3aib, +
3a1a2><%> Y (d + Bavarhy) +

(3a, bt +3a§b1)<%>*1 +3aozﬁ<%>*z +

(w/
T

b?‘(E)*3 (13

and
i = 2a,(B *1)2(%)3 +3a, (B *l)C(%)z +
[2a,(B —DE +a,C*] % +
[a,CE +b6,C(B—1] +[20E(B—1) +

blczj(%)’l n 31;ICE<%>*Z +

Substituting (16) into (12) yields

u(® :iJ—@. ! Bl cig /-0 !
0. 1

C* +4E —4BE | B
Substituting (17) into (12) yields

, G
ZblEz(a) ’ 14

Substituting (12) ~ (14) into (11), the left-hand

/ m

side is converted into polynomials in (=) (m =
T

/ —m

0:1,2,) and () " (= 1,2, ). Collecting

each coefficient of these resulted polynomials to
zero yields a set of simultaneous algebraic equa-
tions for ay,a, »b, ./ and c:
208 —*)(B —Dfa, +6,a} =0,
30 —c*)(B—1DCa;, +30a,a] =0,
(" —cH[2(B—DE +C*Ja; +0,a, +
0, (3alb, +3a,a;) =0,
(" —*H[a,CE +6,C(B—1)] +0a, +
0, Caj + 6aga b)) =0,
(" =26 E(B —1) +b,C* ]+ 0,6, +
0, (3a, b} +3aib,) =0,
(I* —*)3CEb, + 30,a,6% = 0,
(2 =20 E* + 0,61 =0 (15)
Solving these algebraic equations with the help of

algebraic software Maple, we obtain

0, 1 B—-1 .
09, C* +4E —4BE |B—1]"

a, ==k

7, 1
o 0, L g,
@ 5, " 7 1 AE —4BE | |

) 26,
J— s = + Z :
b= O \/Z C” +4E — 4BE

(16)
W 2 1 E
L 0. C*+4E —4BE |E| "’
0, 1
= ’ :i S e — ’
@ =0.b 2N~ criE—ipE  F
(':i\/lzf—o 20,
C? +4AE — 4BE
an

ey
o " i —ipg | BV a8
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C=+2

1 E 0 1 G
-+ 2. e —— | E| 19
u(® «/ 09, " C* +4E —4BE |E o, ¢ ik —apE | FIGG (a9

Family 1. When C* +4E —4BE >0,B # 1, we obtain the hyperbolic function traveling wave solu-

tions
B—1
u, ==+ 7%7|1*B‘H1 (20)
0, 1 E . 2 1 C
(8 =+ =08 cC+2 /-8 * I E|[-
(&) 0, " C* +4E — 4BE |E| o, ¢ ie e Flha—pt
C? + 4E —4BE ]
xa-p @D
where
C,sinh YO FIE —1BE . (. o /O +IE —1BE
H = 2 2 ¢
1

_ e —
/C? — . /C? - Nl +a
C, cosh C* + 42E 4BE £+ C,sinh C* + 42E 4BE c a

C, and C, are arbitrary constants.
On the other hand,assuming C; = 0,B > 1 and C, # 0, the traveling wave solution of (20) can be

written as

w, (&) =% | % corh HEAEAPE (22)

Assuming C, = 0,B > 1 and C, # 0, we obtian

— pe -
w, (@ = [~ O anh AP ZAPE (23)
2

J— P (V a
where £=lx 7F(1+a)t .
Family 2.  When C* + 4E — 4BE < 0,B # 1, we obtain the trigonometric function traveling

wave solutions

0 (8 =+ /fg—l %Hz (24)

0 1 E . 0, 1 C
(O =+ [0 (SIS o) [} S
w (&) 0, "1BE —C _iE |E] o, i ok Flha-p*
V4BE — C* —4E .
2(1 —B) H. ] (25)
where
. o 2 o . o 2 o
~ O, sin vA4BE — C 4E5 4G, cos v4BE — C 4E$
B 2 2
H, = - : )
JiBE — C — . —C -
C, cos 4BE ZC 4E$ 4O, sin 4BE 2( 4E§
C, and C, are arbitrary constants.
|
On the other hand, assuming C; = 0,B < 1 0, IBE — (2 —4E
. . ) us; (&) =+ |— = cot - g
and C, # 0, the traveling wave solution of (24) ! 0, 2
can be written as (26)

Assuming C, = 0,B < 1 and C, # 0, we obtain
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— 7
us, (&) =+ _o an ABE — C 4E$
2 62 2
27
= —76‘ a
where £=lx F(lJra)t'

In order to further understand these results,
the solutions are plotted in Fig. 1~Fig. 4 with the
help of software Maple in the case of suitable pa-
rameter.
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Fig. 1 The solitary solutions u,, (x.#) with B
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Fig. 2 The solitary solutions u,, (x.#) with B
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4 Conclusions

In this paper, we covert the fractional Klein-
Gordon equation into a ordinary differential equa-
tion by the fractional complex transformation,

then we use the extended (G'/G)-expansion

method to obtain two family of solutions, which
include hyperbolic function, trigonometric and
negative exponential solutions. Comparing our re-

[15:187 e can find

sults with the known results
that the solution of the auxiliary equation (10)
are are more richer than of the Bernoulli equation
dz
de

ticularly case of our result.

= az +bz", In fact, the result are only the par-

Fig. 3 The solitary solutions u;, (x,7) with B

2,C =4,E = 3,1 =43 .6, 2—%,62 =

1

79(‘ =2

6,0 =

1000

5004
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Fig. 4  The solitary solutions us, (x.2) with B

—2.C = 4,E = 3.1 =30, =—%,
0, = 6.a :%,c —
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