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Abstract: In this paper, by using the fixed point theorem in cone, we obtain existence of positive solu-

tions of the discrete nonlinear third-order three-point eigenvalue problem

jAau(t — 1) =2a@® fCtyult)), t € [1,T],
I u(0) = Aulp) = Nu(T) =0,

™ +T
3T +2

where 5 € L[

J+1,T],,A > 0is a parameter.
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1 Introduction

Let a, b be two integers with b >a. Let us
employ [a, ] denotes the integer set {a,a +1,
«,b}. For any real number ¢, [¢] is the integer
part of c. In this paper, we consider the existence

of positive solutions of the discrete nonlinear
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third-order three-point eigenvalue problem
j Nut—1) =xa@fGu@)), t € [1,T],

1 w(0) = Aulp) = Nu(T) =0
(D
where T >2 is an integer, A > 0 is a parameter, 3
c IIT + T

]Jfl T],,f € ([1,T], x[0,e),
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[0,°°)) is continuous and a €[ 1, T ],—(0, ).
Difference equations appear in many mathe-
matical models in diverse fields, such as econo-
my, biology, physics and finance!'™ . In recent
years, the existence and multiplicity of positive
solutions of discrete boundary value problems
have received much attention from many authors
and a great deal of work has been done by using
classical methods such as fixed point theory in

[6-12]

cone , lower and upper solutions method™*!,

[14.15]

bifurcation theory and critical point theo-

L618) ete. Specially, the boundary value prob-

ry
lems of third-order difference equations have been
considered by several authors. For instance, by
using the Guo-Krasnosel skiis fixed point theo-

(101 considered the

rem, Agarwal and Henderson
existence of positive solutions of the discrete
third-order boundary value problems. Later, u-

sing the same theorem, Yang and Weng -

con-
sidered the existence of at least one positive solu-
tion and two positive solutions of the discrete
third-order nonlinear difference equation with
several kinds of boundary conditions. In 2007,

0] studied the existence of positive solu-

Karaca
tions of the discrete third-order three-point eigen-
value problem.

Inspired by the work of above papers, the
aim of the present paper is to establish some crite-
ria for the existence of positive solutions of (1) in
an explicit interval for A. All results are based on
the following fixed point theorem of cone expan-
sion-compression type due to Guo-Krasnosel ski-
gl2122]

Theorem 1. 1
K is a cone in E. Assume that Q, and Q. are
bounded open subsets of E such that 0€ Q,,Q, C
Qs and A: KN (Q,\Q,)—>K is a completely con-
tinuous operator such that either

@) TAu |l < lull for w € K N 9Q, and

[Au | = llul foru € K N 9Q,. or
() lAull = lull foru e N K N dQ, and
[Au Il < lull foru € K N 9Q,.

Then A has fixed point in KN (Q:\Q)).

The rest of this paper is arranged as follows.

Let E be a Banach space and

In section 2, we present some lemmas that will be
used to prove our main results. In section 3, we
discuss the existence of positive solutions of (1).
We would like to point out that the existence re-
sults on infinitely many positive solutions of (1)
we established has been given rather less atten-
tion in the existed literature. For every result, an
open interval of eigenvalues is determined in an

explicitly way.
2 Preliminaries

Let E={u:[0,T+2],—R|u(0) =Aulyp) =
Nu(T)=0}., Then E is a Banach space under the
norm |« | =maxero 12, lu( |E" ={u:[0,T

+21,>[0, + ) [u(0) =Aulyp =Nu(T) =0} is

the nonnegative functions in E.

At first, let us convert the {following
linear problem
{Asu(t -1 =yW,t €[1.,T],, )
u(0) = Aulp) = Nu(T) =0

to the equivalent summation equation. To get it,

let us define the Green’s function G(z; s) as fol-

lows.
Jz‘min{v,s} +t —r ot — 2 <,
G(t,s)= ) ,
ltmin{wy,s} — 5t 42 ;S,s <t—2
(3

Let a, b are two integers with 6>a. We de-

fine Zy(s) = 0. Then we get the following Lem-

s=0b
ma.

Lemma 2.1 The problem (2) has a unique so-
lution

w(®) = DG, y(s) 4

s=1

where G(t,s) is defined as in (3).
Proof
both sides of the equation in (2), then we get

Summing from s =1 to s =t —1 at

t—1
Nu(t =1 = Nu(0) + D) y(s).
s=1

Repeating the above process, we obtain

AuCt —1) = Au(0) + (¢t — 1) Nu(0) +

1—1
D=5 — Dy,
s=1
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Summing from s=1 to s =t at both sides of the a-
bove equation, we have

t(t —1)
2

Z((t — )t —s— D)y(s).
=1 2

u(t) =1t Au(0) + Nu(0) +

By using the boundary condition Au(yp) = N u(T)

= 0, we get that

T
JAMO) + D3 =0,
s=1

T 71
lAu(O) = D) = D (=¥
s=1 s=1
Therefore,

T 2n — 12 + 7!
u(@e) = >3 F— ) = Dely = Dy +

s=1

1
—2
Z (t —s)(t —s — Dy(s)
i—1 2

which implies (4) holds.
For all t € [0, T +21,, 5

5

Lemma 2. 2

e[1,T],.

0" G(y,5) < G(t,5) < G(y59) (6)
where

9" = min{ d T+27t} D)

p+1'T +1 9
Proof A direct computation shows that 0 <
G, 5) <Gy, forallt€[0,T+2];,s€[1,
T]s.
the branches of the Green's function (3).
(D) It —2<s<y—1: Then G, 5) =

G o 42 m — 7’
w’(;(ms) — @7_57—+7 Simple alge-

For the lower bound, we proceed by case on

bra yields
LG <Gy,
7

2 .
(i) 5=t —2<p 13 Since Gros) = S5 =

G(y,s), it follows that

%G(mo < Glr.).

Gi sy~ 1 <t—2. As in case (2), G(t,s)

-2 .
= ;‘S = G(y,s), thus
T+2—t, .
sS < 2 S5).
m(l(r/ ) < G(1ys)
(iV)=2<9—1<s5:Gls) = @7*;_“

and G(7,5) = 372—+7Z Simple algebra yields

L
7]+]

(B gp—1<t—2<s. Asincase (4), G(z,s)
= Z—l"]izt—ﬂ and G(z,s) = 37%77 Define

G(y,s) < G(,5).

1, T+2—

w(®) = G(ts) = 5 ( Heg.n

TJrl*r]
Now w(np+1) = 0.w(T +2) = G(T +2,5) >0,
and AN w(t) <0, 1.e., wis convex, then w(t) =0

on [p+1,T+2],; hence

T+2—t, ‘ <,
m)(](ﬁy\)g(l(f’\)
6)g—1<s<t—

= Z]%’Z, while

(8)

(

2 < T. Note that G(y,s)

Glirs) — etp =t e, =G =s = 1) >

2 2
2t — 1" +1
5 .
consequently, the employment of as in (8) yields
T+2—1t,, <
— »s) < G(t,5).
(T T 777)(1(1] s) < G(t,s)
t TH+2 *t}

Since L > L, then * = min{
i

77+1 77+1’T+1*7]

3 Existence results

In this section, we are concerned on the ex-
istence of at least one positive solution of (1). To
get it, we assume that

(H) f:[1,T], X[0,e0)—>[0,+c=) is con-
tinuous and the function f(z, u) is increasing for
each (z,u) €[1,T]. X[0,0);

(H,) a:[1,T],~[0,+ <) is increasing.

Define the cone K by

K={u€eE" " u(t)=0" ul,

rel0, T+2].}.
t TH+2—t
7+ 1 T +1— 7
Define the integral operator T, : K—~K by

B

where §* = min{

T () =2 D,G(t,9)als) f(souls).
s=1

Obviously, if u is fixed point of T, in K, then u is
positive solution of (1). Because E is finite di-
mensional, then we know that T, : K — K is com-

pletely continuous. Set
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A = max EG(V,s)a(S)»

e [0, T+Z

B = max Z@ G(p,s)als),

tef0. 2], =
. . (tyu)
fo = lim  min fi’,
ot t€L0.TH2], u
f. =lim min M’
u—>oo ze[O.szjz u
£ = lim max M’
w0l t€00.TH2], u
/7 =1lim max M
woo 1€ [0, T+2],, u

Theorem 3.1 Suppose that (H;)and ( H,)
hold. In addition, assume that there exist two

positive constants r and R with » # R such that

(Ay) f(tyu) = ,forV(t,u)G[l T]. %

[0"R,R],
then (1) has at least one positive solutionu” € K
with min {r,R} < |« | < max{r,R}.

Proof We only deal with the case »r<<R, the
case r <R is similar to it, so we omit the details.
Let Qy={u € E: lull <r})and Q, = {u € E:

lull <R}. It follows from (A,) that, for any u

€ KNay

,eé?f‘f‘ﬂf ZG(t,s)(a,s)f(s,u(»))
Alarglz}‘x” ZG(r],s)(a,s) =r=lul.
Therefore,
| Tou | < llull, foru € K N 2Q, €D

On the other hand, for any u € K N 2Q.,.

0°R < |u(s)| <R, for s€[1,T].. It follows
from (A,) that for anyu € K N 9Q.,
re[r({lgllfz]//l ;G(l‘,s)(u,s)f(s,u(s))
AI&roneTlxzj 2(9 G(wy,s)(a,s) =R=lull.
Therefore,
[Tiaull = lull,foru e K NaJQ, (10)

Applying Theorem 1. 1 (i) to (9) and (10)

yields that T, has a fixed point«* € K N (Q.\Q),

and then u” is a positive solution of (1) with r<C
u” < R.

Theorem 3.2 Suppose that (H;) and (H,)
hold. In addition, assume that

(Ay) f° =0,f. = o, or

(A fo = oo, 7 =
Then for any A € (0,<2), (1) has at least one
positive solution.

Proof
holds.

First we consider the case of (A;)

For any A € (0,°0), since f° =0, for/\iA >

0, there exists R, > 0 such that fuw < 1 for
u AA

(t,u) €[1,T]. X[0,R, ]. Therefore,

R
’ < i < 719 oy ’ -
f(tuw) A A for (t,u) € [1, T
X[O,R]:I.
On the other hand, since f.. =<, for (9*1/18
>0, there exists R, > R, such that VAT <
u
ﬁ for (¢, w) € [1, T]. X [0"R,,>=)],
which implies
ex R'} R')
) =t > o = 2E, :
SCauw) 7B 0B B for(z, w) €

[1,T]. X[0" Ry, 1.
Therefore, by using Theorem 3. 1. T, has a fixed
point u " € K.

Next, let (A,) holds. In view of f, = <o, for

1 > 0, there exists R,> 0 such that

0" AB

f(tau) = . for (tyu) E[laT]Z X[O,R]]

u
0" AB
an

Set Oy ={u€E: |ull <R, }.Foru € K N Q>

uls) =0" lull =0"R,.
Thus from Lemma (3) and (11) one can conclude
that

| T | =

max AEG(Z,s)a(\)f(\,u(s))

te OT+z: =1

L nax AZ& Glpe)a(0" llull =

— [ 2 |l
0" Belo.Ti2], ’

which implies
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[Tiull = lul,foru e K NaQ, (12)
Again, since [~ =0, forALA > 0, there exists R,

> 0 such that
f.u) <

AA , for (t,uw) € [1,T], X[Ry, ) (13)

We consider two cases: fis bounded and f is un-
bounded.

Case 1. Supposed f is bounded, say f < M
Let R, = max{2R;, ,\MA}. If

u € Kwith [[u | =R,,

I T | <X max ZG(r],s)a(\)M*

relo, Tzl
MA <R, = llul.
Consequently, [ T,u | < llul.
{u € K: lull <R}, then
[ Tou | < llul,foru € K NIQ, 14>
Case 2. Supposed f is unbounded, we let R,
> max{2R,,R,} such that f(t,u) < f(¢t.R,) ., for
(tyu) € [1,T], X [0,R,). For u € K with

l«l = R, by Lemma (3) and (13).

If we set Q, =

| Tu | =

’er(r)léllfﬂ){;G(t,s)a(s)f(s,u(s))

A le{r(r)le}fﬂ ZG(y},s)a(s) AZ <R, = llul.
If wesetQ, ={u € K: |lull <R,}, then

[ Toull < llull, foru € K N JIQ, (15

Applying Theorem 1. 1 (ii) to (13) and (14)
yields that T, has a fixed point «* € KN (Q.\Q)).
Also applying Theorem 1.1 (ii) to (12) and (15)

yields that T, has a fixed point «* € KN (Q,\
Q,). Then u™ has a positive solution of (1).
Theorem 3.3 Suppose that (H;) and (H,)
hold. In addition, assume that 0 < Afo < 0" Bf..
1

< oo, Thenforeachké(e B/ Af ——), (1) has
one positive solution.

Proof We construct the set (; and Q.. In or-
der to apply Theorem 1.1, let A € ((9 Bfm Alfo)
and choose e > 0 such that

S S

0" B(f.. —e) TA +eo)

By the definition of f”, there exists R, > 0 such
that f(¢t,u) < (f° +e)u, for (t,u) €[1,T], X[0,
R, ]. Letu € K with [|ull = R,. Then

max AZG(t,s)a(s)f(s,u(s))

te[0,T+2],

A max ZG(V,\)a(s)(fo +e) llul =

1€0.T+2],

MO+ lull < lul.
Consequently, || Thu [l < lull.
{u € K: lull <R}, then

[ Thull < llul,forue KNI (16)
Next we construct the set Q,. By the defini-
tion of f.., there exists R, such that f(z,u) = (f..
+eu for (t,u) € [1,T], X [0,R,]. Let R, =

If we set Q, =

max{ZRl,éif} andQ, = (u € K lul <R,

If u € K with |ull = R;, then u(s) =
0" llull =R,. Therefore
| Tou | =
max AEG(Z,s)a(s)f(\,u(s))

e o, T+Z:

A max Ze G(ps)a(s)(f =0 lul

te[0,T+2],

=M~ B(f..
Hence

I Taull < lul, foru € K NaQ, a7n
Applying Theorem 1. 1 (i) to (16) and (17)
€ KN (Q\
Q.), which is a positive solution of (1).

Theorem 3.4 Suppose that (H;) and (H,)
hold. In addition, assume that 0 < Af“ < 0" Bf,

—o) llull= llull.

yields that T, has a fixed point u~

< oo, Then for eachX € ( ——), (1) has

0" Bf(, Af“
one positive solution.

Proof We construct the set Q, and Q.. In

order to apply Theorem 1.1, let A € (

1
'R Bfo ’
F) and choose e > 0 such that

L m—
0" By o A o

By the definition of f,, there exists R, > 0 such
that f(t.u) = (fy —e)u, for (t,u) € [1,T], X
[0,R,]. Soifu € K with || u |l = R,, then
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uls) =0" lul =0"R,.
Thus, in the same way of above,we have

| Thu | =

T
max A > G(t,9)als) f(s,uls)) =

iefo.Tr2],
°B(fo —e) lull= llul.

Consequently, [ T,u |l = lull. So if we set Q,
={u € K: [lull <R;} then

Tl = lul,foru e KNI (18)

Next we construct the set Q,. By the defini-
tion of /", there exists R, such that f(z,u) < (f~
+eu, for (t.u) €[1.T], X[R,.,2). We consid-
er two cases: fis bounded and f is unbounded. If
fis bounded by M >0, set R, = max{2R, ,AMA}.
Then

Ifu € Kwith [ull =R;,

| Tu ll =

max A ZJDG(t,.\‘)a(s)f(s,u(s)) <
=

te[0,T+2],

.
A max > G(ps)a(sH)M =AM <

relo. 42,
R, = llull.
Consequently, [ T,u || < llul. So if we set Q,
={u € K: lull <R} then

I Tl < llull,forue KNaJQ, a9
When f is unbounded, we let R, > max{2R,,R,}
be such that f(t,u) < f(¢,R;), for (t,u) € [0,
T], X[0,R,]. f{u € K: lul =R}, by using
method to get (3.10), we get that

T | << Mol
Hence if wesetQ, = {u € K: [lull <R,}.

[ Tou | < lTull, foru € K NJdQ,. (20)
Applying Theorem 1. 1 (ii) to (18) and (19)
yields T, has a fixed point u* € KN (Q:\Q,). Al-
so applying Theorem 1.1 (ii) to (18) and (19)
EKNQ\Q.

Then u” is a positive solution of (1). The proof is

yields T, has a fixed point u”~

compete.
We state the following result similar to The-
orem 3. 3 and 3. 4 without proof.
Theorem 3.5 Suppose (H;) and (H,) hold.
(1) If fo. = o=,0 < f° < o= then for each A €

(O,L) , (1) has at least one positive solution.

Af°

(2) I fy = 0,0 < f~ < co then for each ) €

(O,%) , (1) has at least one positive solution.
Af

(3) If f° = 00,0 < f.. < cothen for each} €
(ﬁ, o), (1) has at least one positive solu-
tion.

(4) If [~ = 0,0 < f, < oo then for each €
(ﬁ, =), (1) has at least one positive solu-
tion.
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