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Existence of solutions to a class of semilinear fractional differential equations

ZHENG Hui-Cui, LI Miao
(College of Mathematics, Sichuan University, Chengdu 610064, China)

Abstract: In this paper, based on the Schauder fixed point theorem, we consider existence of the solu-
tions for a class of two-term fractional initial boundary value problem:

‘Deu(t) + ADfu(t) = f(t,u()),0<t<h,

w(0) = zy,u' (0) = Vo s
where a€ (1,2],a>B>0,and the fractional derivative is in the sense of Caputo. Our results improve
some recent results.
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techniques of nonlinear analysis, such as fixed-point

1 Introduction
theorems, Leray-Schauder theory, and topological

During the past decades, fractional differen-

[H) have attracted much attention

tial equations
due to their application in various sciences, such
as physics, mechanics, chemistry, engineering,
and many other branches of science.

Recently, there are many papers devoted to
the existence of solutions to fractional differential

equations, see for example, Refs. [5-15]. Some

s BH: 2016-03-27
EE£TH: HEXARREE4 (11371263)

degree theory are applied to research the existence of
the solutions. In most of the papers, a Lipschitz-type
condition is assumed as the basic hypothesis. For ex-
ample, Diethlm and Ford® proved the existence of
the fractional differential equation

jD‘,’u(t) =fult)),

1u® ) =ul £ =0,1,...
where 0 <o << 1,m is the integer defined by m — 1

ym—1,

EER N ALEFA992—), &, WEWFEE, FEBEHITH 1 AR HZ 45047, E-mail : 395008875 @ qq. com

BIR1EE . 27, Email. mli@scu. edu. cn



30 Wl K FROERAFF IR % 54 %

< a < m, the differential operator D¢ are taken in
the Riemann - Liouville sense and the initial con-
ditions are specified according to Caputo’s sug-
gestion, provided the Lipschitz condition holds:

| fGox) — f, | <L|lx—y].

Next in 2005, Yu''* considered the existence
of the same equation mentioned above but in a
less weak condition of f(z,u(t)) ;

| ftox) — ) | <A 2 —y]),
where & is continuous and A satisfies an integral
condition. By the lower and upper solution method
and a fixed point theorem, Ref. [17 ] discussed
the existence for a class of fractional initial value
problem:

Diu (o) =f (s ul)),t € (0,0,

{tz”u(t) o =b, s DT () | =y =by s
where f € C([0,h] XR),D? is the Riemann-Li-
ouville fractional derivative, 1 << << 2. In this pa-
per they used the assumption as follows: f:[0,A]
X R — R and there exist constants A,B,C=0 and
0 <r <1<r, <1/(2 —a) such that forz € [0,
h]

| fou) — F,0) | <

Alu—wv|"+Blu—v]|%,usv €R
and | f(¢,0) | < Cfort € [0,h].

On the other hand, it appears that for some
processes the order of the time-fractional deriva-
tive from the corresponding model equation does
not remain constant. A possible approach to han-
dle these phenomena is to employ the multi-term
time-fractional differential equation, see for exam-
ple Ref. [18]. For instance,Babakhani and Daftardar-
Gejjit™™ considered the initial value problem of nonlin-
ear fractional differential equation:

L(D)u = f(t) 0<1<1,

u(0) = 0,
where L(D) =<D*% —a’ D% 1 —+—aq{D",0 <3,
< sy << ver <5,<< 1, and q; >0,j =1,sn —
1.°D* denotes the Caputo fractional derivative of
order s,. The mathematical analysis of such equa-
tions has been carried out extensively by many
authors-"!,
Motivated by the works mentioned above,

we consider in this paper the existence of solu-

tions for a class of two-term fractional initial
boundary value problem

‘Déu(t) + ADu(t) = f,u()),0<t<h,

w(0) = z0,u (0) = y, @)
where ‘D¢,°D# are Caputo fractional derivatives, 1
<a <2anda > p > 0. Lemma 3. 2 clarifies how
the regularity of a function can be improved after
integrating the function for {fractional times,
which may be of independent interest. In our
main result our assumption is more weaker than
those in Refs. [ 2,17 ]. It is remarkable that our
methods also apply to multi-term fractional differ-

ential equations.

2 Preliminaries

We begin with the definitions of fractional in-

tegrals and fractional derivatives™'. Leta > 0,m
= “L say,the smallest integer greater than or e-
qual toa, and I = (0,T) for some T > 0.
Definition 2. 1 (Riemamn-Liouville fractional in-
tegral) The Riemamn-Liouville fractional integral of

order ¢ > 0 is defined as follows:
LfD: = (s QD — J'gau — 9 f(s)ds.
0
for f € L'(I),t > 0, where

tal
. (D) zjil“(a)’t >0,

0,t <0
and I'(a) is the Gamma function.

Definition 2. 2 (Riemamn-Liouville fractional de-
rivative)  The Riemamn Liouville fractional deriva-
tive of order « for all f satisfying

SeELY(D, g, ,* f€W™ (D
by

Dif(). =Dy (g, ) * f() =D/ f (),

m

where D:” = @ o« 1M S N.

Definition 2. 3 (Caputo fractional derivative)
The Caputo fractional derivative of order ¢ > 0 is
defined by

‘Def(e)y. = I'D)f().

The basic properties of fractional integrals and
derivatives are collected in the following lemma.

Lemma2.4 If f € C*'(D,a >0,8>0,
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then we have the following conclusions:

D BIEfF() =1 f ()

G LI f o =11 ()

GiD ‘DI f () = f();

-

Gv) IDif () = f() = D) [P0 gsy (D).

=

Next we recall the definition of compact op-
erator and Arzela-Ascoli theorem.

Definition 2.5 A compact operator is a line-
ar operator T from a Banach space X to another
Banach space Y, such that the image under T of
any bounded subset of x is a relatively compact
subset of Y. That is, if {x,} is a bounded se-
quence in X, then there is a subsequence {I,,k ¥
such that {Ta‘,,k} converges.

Lemma 2. 6 ( Arzela-Ascoli theorem)  Con-
sider a sequence of real-valued continuous func-
tions { f,} defined on a closed and bounded inter-
val [a,b] of the real line. If this sequence is uni-
formly bounded and equicontinuous, then there
exists a subsequence {f“k} that converges uni-
formly. The converse is also true, in the sense
that if every subsequence of { f,} itself has a uni-
formly convergent subsequence, then {f,} is uni-
formly bounded and equicontinuous.

Finally, the following fixed point theorem is
needed in the sequel.

Lemma 2. 7(Schauder fixed point theorem)

If U is a nonempty convex subset of a Banach
space and T is a compact operator of U into itself
such that T(U) is contained in a compact subset

of ,then T has a fixed point.

3  Main results

We will use the following assumption:
[H] £:[0,h] X R—=R and there exist con-
stants A,B,C>=0 and 0 <<r, <1 <r, such that for

t € [0,n],
| FCtouw) — fyv) | <Alu—v|" +B lu—wv|"
(2
for u,v€R and
| f(,0) |<C
fort € [0,h].
Remarkl Assume that f(z,u) = f(¢) and f

is a Holder continuous function,then (2) holds.
Let ‘D¢, ‘Df and f be as in (1).

Then u(2) is a solution of (1) if and only if u(2) is

Lemma 3.1

the solution to the integral equation

. (Taiﬂ
u(t) = x,[ 1 +1—‘(a *‘8+1)] + yolt +
P(a—ﬂ+2)] J. T@-p vOET
t ol
j %ﬂs,um)ds (3
0 a
whenl <p <2, or
— (Vtrﬂ —
u(t) —1(1[1+P(a7‘8+1>]+yoz
t a1
CJ %u(s‘)ds-ﬁ—
0 a—
t el
J %f(s,u(s))ds 4)
0 a

when 0 < < 1.

Proof We suppose that 1 < g < 2. By inte-
gration ¢ ~times on both sides of (1), we can ob-
tain

[Dsu(e) + o IFDu () = Iif (toule)),
it then follows from Lemma 2.4 (iv) that

w(t) —uC0) —u (O)t+cI* P (u(t) —ul0) —

W (D) =T f (tyu(r)).
By inserting the initial data «(0) = z,,u' (0) =
Yo we get
u(t) —xy —yot tel P(u(t) —x —yot) =
LfG,ult)),
that is
u(t) = xo + yot —cl P (u(t) —x0 — yot) +
Lf(tou@) = x[1+cg, s (O] +y,[1+

8opr2()] *CJ Zep(t —)uls)ds +

J" 0. (t — 9 fCsauls))ds,
0

This is (3). Using the same method one can
prove (4) for the case 0 << g <C 1.

In the following lemma, we discuss how the
regularity of a function can be improved when in-
tegration the function for y -times.

Lemma 3.2 Letf € L7[0,T],y >0 and de-

"t

LJ ¢ —
F()’) 0

fine the function g(z) = I7f (1) =

)7 f(s)ds.
(1) if 0 <y <1and f(z) =T(y + 1), the
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function g(z) =¢” is y -Holder continuous with
| g(v) —g() | <t —517,
tys € [0,T];
(i) if 0 <y <1, then g is y-Holder continu-

ous on [0, T]. More precisely,

21 £ Il

7 — v <
| g(t) — g(o) ‘\F()/Jrl)

|t —s |7,

t,s € [0,T];
(iii) if y > 1, then g is Lipschitz continuous
on[0,T]
lg() —gO 1 <g, (DIl fll]t—sl,
t,s€[0,T];
(iv) if y>1 and y €N, n =[ 7 [then g € C"[0,

T] and g™ is (y —n)-Hélder continuous:

2 f0 e .
(n) RSO Ry < | rn
g™ () —g (‘S)‘\F(y—nJrl)'t s,

t,s€[0,T].
Proof (i) This follows directly from the

inequality (a +0)" <a” +b" for0 <y <1landa,
b = 0.
(i) Let f € L7[0,T] and let ¢, ,t, € [0,T]

such that# >=1t,, then

| g(t) —g(t) | =| %J (1, — )7 f()ds —
1 _ r—1 J _
F()’)J (t;, — )7 f(oHds | < es [(t,

T = (2, — 7 1 (Hds |+ e )JI)(t] —

- 71
)1 . . < N
DT (s | < es

{le [ty — 7" —

(t; — )7 ds +J"1 (4, — )7 ' ds) =

_ [ f [ )Y | )Y |k
F(7+1)|:(t2 ‘S) ‘o ([1 .S) ‘0 +
(=97 0] = e roq, — 4y —

'y +1)

, 210 71 oy
— ] \F(y+1)(t )7,

(iii) For y > 1, we have

< Hf H {J:l:(tl 7S)y71 _

| g(t) — g | ()

(ty — ) ]ds +J” (1, — )7 1ds) =

£ (G, —

T+ D +1) TG =y — 7|7+

(=911 =l =

—in <
NCES)) %)

T ' fl-
ray

g, (D) £ 1ty —1y).
(iv) Lett >=0andh >0. Sincey >1, we have
> — +h
gt +h) —glt)y 1 [J (+
0

h  RD(y)
h— 7 f(o)ds —Jr (t— 97 f()ds] =
0

(tl _[2) =

1 (" G+h—s)"" —@—=)""
F(}’)Jo A f(s)ds
#F”u Fh— 97 f(Hds >
IANGORN ) U

1 — r2 . .
Ty 71)J (t — )77 f(s)ds

by dominated convergence theorem. By induction

we have g €C"[0,T], forn = |y| and

2® (1) — ﬁj (=97 f(s)dse
k =1,--,n. And in particular,
R e L

since 0 <<y —n << 1. By (i) we have
|g(zz) (If) 7g(71) (\) ‘ <

20 f I - It —s|7
'(y—m+1) ’ ’
Remark 2 The results of the above lemma

are easily extended to vector-valued function f €
L= ([0,T],X), where X is a Banach space.

Lemma 3.3 Suppose [ H] holds. Define the
operator T, T, by

—p
(T ) (D) = 2,[1 +7tﬂ+1)] +
a 7J (t —5)~ N

y<)[t+r<7aiﬁ+2>] c e — ﬁ) u(.s)d.s+

t ol

Jo %f(s,u(s’))ds (5)
and

c
(Tyu) (1) = xo[1 + m] + ot

L)t
CJO Wu(h)db +

o D)
Then the operators T, and T, are compact opera-
tors on C[0,h]
Proof We only show that the operator T, is
compact from C[ 0,4 ] to C[0,h]. The proof for T,
is analogous. If u € C[0,h ], then it follows from

S (syuCs))ds.
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the definition of (T u)(¢) and Lemma 3. 2 that
(T u) (t) is also continuous. Now given a se-
quence {u,} CC[0,h] such that u,—>u in C[0,h],
then by the definition of T one has

Pt =)t
J— < p ) —
| Tvu, () —Tiu(t) | <| CJO o) (u, (s)

] ‘ e
u(s))ds | +] Jo T (f(syu,(s)
Flsaul)ds | = — el

B N L

-
 Alu,—uln 4B lu, —u ) <
e +1)( N, —ulln +Bllu, —ull ")

Lol gupn (D) llu, —ull +

e (WA lu, —ullnm +Bllu, —uln),
it follows that T, is continuous on C[0,A]. Sup-
pose that U = {u € C[0,h]: | u(t) | < R} is a
bounded set, then T,(U) is uniformly bounded
since T, 1s continuous.
prove the equicontinuity of
T,(U). For everyu € U, and t,,¢t, € [0,h], by
Lemma 3. 2,

| Tiulty) — Tiulty) | =] o (gopr (1) —
Gepr1 (82)) T30ty — 1) +eyo(gepa (1) —

4 (fl - S)rﬂ;l

Finally we

gqu‘z(l] )) 7C(J0 mu(\)ds -
ty (4. — Y pL
J“ 7(1‘;_‘( ‘8)181) u(s)ds) +

0 a

4 (t] 75)01*1 . ] o
(JO TG fGsyuls))ds

ty — )t
J_ %f(s,u(é‘))d” <
o @

‘C‘To‘ _ P o
F(afﬂ+1) ‘ L Ly ‘ +‘ Yo | ‘ 4
12 ‘+‘ Yo | gafﬁg(h) " t, — I ‘+
2] c¢c| R s
— - °* L, — 1, |“ +
Fa—pB+D o e |

(AR" +BR™) g, (h) «| t; —t |,
which gives the equicontinuity of T, (U). It thus
follows from the Arzela-Ascoli theorem (Lemma
2.6) that T, is compact on C[0,h].
Now we are able to give the main result of
this paper.
Theorem 3.4 Suppose [ H] holds, if there
exists some constant R such that
[z | (1 + el ge s (W) +Hyo [ (A +
\C\grﬁg (h)) + |c\grﬁ+1 (WR+

g1 (R) (AR +BR” +C) <R
when 8 > 1 or
[0 [ A+ el ge g1 (B + 1y [h+
lelg, pri (WR+ g, (R) (AR +
BR” +C) <R
when 0 << <C1, then the fractional initial bounda-
ry value problem (1) has at least a solution in
CLO0,h].
Proof SupposeU = {u € CLO,h]: | u(t) | <
R}, thenU is a bounded convex set. For u €U,
by assumption [ H],
| f(tyu) | << AR" + BR™ + C.
Therefore, by (5) and LLemma 3. 2,
ct?

| (T | @ =+ mZggy) +

Cta*,’}-H

W TG prD)
SN DA
CL e =B wids
J" wf‘(;,u(s))dv | <[z | (1+
0 F(O{) ’ ) ) !
e e VU L O R

| ¢ | RJ’ G L (AR 4+ BR® +
o I'a —ﬁ)

t(r— )t
- < .
C)JO (o) ds <| x| (1 +

Lol gepn (W) +1 o | (R4 | gep () +

| ¢ | Rg,pii(h) + g (W) (AR™ +

BR™ +C) <R.
That is to say, T, (U) is also contained in U. Use
the same method, we can obtain the same conclu-
sion for Tyu(?).

Since the operators Ty and T, are compact op-
erators by Theorem 3.3, according to the
Schauder fixed point theorem (Lemma 2.7), we
know that the fractional initial boundary value

problem (1) has at least a solution in C[ 0,/ ].
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