Jul. 2021 Vol. 58 No. 4

含快变时滞的格 FitzHugh-Nagumo 系统的拉回吸引子

王学敏

(西南交通大学数学学院,成都 610031)

摘 要:本文研究具有快时滞影响的格 FitzHugh-Nagumo 方程的动力学行为,证明了拉回吸引子的存在和唯一性.一般来说,研究时滞方程吸引子要求时滞项的导数小于 1(慢时滞),本文则使用差分不等式技术消除了这个约束. 因而本文的方法可被用于处理具有快变延迟的方程.

关键词:全局吸引子;格;FitzHugh-Nagumo系统;快变时滞

中图分类号: O175.29

文献标识码: A

DOI: 10. 19907/j. 0490-6756. 2021. 041002

Pullback attractors for lattice FitzHugh-Nagumo systems with fast-varying delays

WANG Xue-Min

(School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China)

Abstract: We investigate the dynamical behavior of lattice FitzHugh-Nagumo equations with fast-varying delays and prove the existence and uniqueness of pullback attractor for the equations. Generally, studying the attractors of time-varying delay equations require that the derivative of the delay term is less than 1 (slow-varying delay). In this paper, by using some differential inequality techniques, we remove this constraint. Thus our method can be used to deal with equations with fast-varying delays.

Keywords: Global attractor; Lattice; FitzHugh-Nagumo system; Fast-varying delay (2010 MSC 35B40; 35B41; 37L30)

1 Introduction

Lattice differential equations have many applications where the spatial structure has a discrete character. Wang *et al.* [1] used the idea of 'tail ends' estimates on solutions and obtained a result concerning the existence of a global attractor for a class of reaction-diffusion lattice systems. Later on, their results were extended to various problems, see for instance, Refs. [2-11]. The

FitzHugh-Nagumo system arises as a model describing the signal transmission across axons in neurobiology^[12]. The asymptotic behavior of a FitzHugh-Nagumo system was investigated in Refs. [13-15]. The results were extended to stochastic, see for instance Refs. [16-17]. Since time-delays are frequently encountered in many practical systems, which may induce instability, oscillation and poor performance of systems, delay lattice systems then arise naturally while these

收稿日期: 2020-11-19

基金项目: 国家自然科学基金(11871049); 四川省科技项目(2019YJ0215)

作者简介: 王学敏(1995-), 女,河北张家口人,硕士研究生,主要研究方向为微分方程与动力系统. E-mail:18733528372@163.com

delays are taken into account. Recently, attractors of delay lattice systems have been considered in Refs. [18-24]. The existing results of studying attractors for time-varying delay equations require that the derivative of the delay term be less than 1 (slow-varying delay). By using differential inequality technique, our results remove the constraints on the delay derivative. So we can deal with the lattice FitzHugh-Nagumo systems with fast-varying delays (without any constraints on the delay derivative).

Motivated by the discussions above, we study the dynamical behavior of the following lattice FitzHugh-Nagumo system with fast-varying delays: for $\tau \in \mathbf{R}$ and $i \in \mathbf{Z}$,

$$\frac{\mathrm{d}u_{i}}{\mathrm{d}t} + \nu(2u_{i} - u_{i+1} - u_{i-1}) + \lambda u_{i} = h_{i}(u_{i}(t - \rho_{0}(t))) - \alpha v_{i} + f_{i}(t), \ t > \tau$$
 (1)

$$\frac{\mathrm{d}v_i}{\mathrm{d}t} = -\delta v_i + \beta u_i + g_i(t), t > \tau$$
 (2)

with the initial condition

 $u_i(\tau+s) = \varphi_i(s), v_i(\tau) = \varphi_i, s \in [-\rho, 0]$ (3) where u_i , v_i is the unknow value function, v, λ , α , δ , β , ρ are positive real constants, $\rho_0 \in C(\mathbf{R}, [0, \rho])$ is an adequate given delay function $f(t) = (f_i(t))_{i \in \mathbf{Z}} \in L^2_{loc}(\mathbf{R}, l^2)$ and $g(t) = (g_i(t))_{i \in \mathbf{Z}} \in L^2_{loc}(\mathbf{R}, l^2)(l^2)$ is defined later) are given time dependent sequences, h_i is a nonlinear function satisfying certain conditions, $\varphi_i \in C(\mathbf{R}, [0, \rho])$ and $\varphi_i \in \mathbf{R}$.

This paper is organized as follows. In Section 2, we prove that the lattice system (1)-(3) generates a non-autonomous dynamical system. In Section 3, we derive a priori estimates on the solutions to (1)-(3). In Section 4, we proof the existence and uniqueness of pull-back attractor for the lattice systems.

2 Priori estimates

In this section, we establish the existence of a continuous non-autonomous dynamical system generated by System (1)-(3) and derive some priori estimates which will be needed for proofing the existence of a global attractor. We formulate

System (1)-(3) as an abstract ordinary differential equation. To this end, we denote by l^2 the Hilbert space defined by

$$l^2 = \{u = (u_i)_{i \in z} : \sum_{i \in Z} u_i^2 < +\infty\}$$

with the norm $\| \cdot \|$ and inner product (\cdot , \cdot)

given by
$$\|u\| = \left(\sum_{i \in \mathbf{Z}} u_i^2\right)^{\frac{1}{2}}, (u, v) = \sum_{i \in \mathbf{Z}} u_i v_i$$
 for each $u = (u_i)_{i \in z} \in l^2$, $v = (v_i)_{i \in z} \in l^2$. Define the

 $(Bu)_i = u_{i+1} - u_i,$

$$(B^* u)_i = u_{i-1} - u_i,$$

$$(Au)_i = -u_{i-1} + 2u_i - u_{i+1},$$

linear operators $A, B, B^*: l^2 \rightarrow l^2$ as

for each $i \in \mathbb{Z}$. Then

$$A = BB^* = B^*B,$$

$$(B^* u, v) = (u, Bv), u, v \in l^2.$$

Denote

$$\varphi(s) = \{\varphi_i(s)\}_{i \in \mathbb{Z}}, s \in [-\rho, 0]$$

and $\varphi = \{\varphi_i\}_{i \in \mathbb{Z}}$. Denote by u_i the function defined on $[-\rho, 0]$ according to the relation

$$u_t(s) = (u_{it}(s))_{i \in \mathbf{Z}} = (u_i(t+s))_{i \in \mathbf{Z}} = u(t+s), s \in [-\rho, 0],$$

and let $C_{\rho}=C$ ([$-\rho$, 0], ℓ^2) with the maximum norm

$$\|\psi\|_{\rho} = \sup_{-\rho \leqslant s \leqslant 0} \|\psi(s)\|, \psi \in C_{\rho}.$$

Then System(1)-(3) can be rewritten as

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \nu Au + \lambda u = h(u(t - \rho_0(t))) - \alpha v + f(t),$$

$$t >_{\tau}$$
 (4)

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\delta v = \beta u + g(t), \ t > \tau \tag{5}$$

with the initial condition

$$u(\tau+s) = \varphi(s), \ v(\tau) = \varphi, \ s \in [-\rho, 0]$$
where $u = (u_{\tau})_{\tau \in \Gamma}$

where $u = (u_i)_{i \in \mathbf{z}}$,

$$h(u(t-\rho_0(t))) = h_i (u_i(t-\rho_0(t)))_{i \in \mathbf{z}},$$

 $f(t) = (f_i(t))_{i \in \mathbf{z}}, g(t) = (g_i(t))_{i \in \mathbf{z}},$

 $\varphi = (\varphi_i)_{i \in \mathbf{z}}$ and $\varphi = (\varphi_i)_{i \in \mathbf{z}}$. We make the following assumptions on h_i , $i \in \mathbf{Z}$. For each $i \in \mathbf{Z}$, h_i is a nonlinear function satisfying the following assumption:

(H) $h_i(0) = 0$ and h_i is Lipschitz continuous uniformly with respect to i, that is, there is a positive constant L, independent of i, such that for all $s_1, s_2 \in \mathbf{R}$,

$$|h_i(s_1) - h_i(s_2)| \leq L |s_1 - s_2|$$
.

In fact, by (H) we find that

$$||h(u)-h(v)|| \leq L ||u-v||, u,v \in l^2.$$

Then it follows from the standard theory of ordinary differential equations that there exists a unique local solution (u, v) for System (4)-(6). The following estimates imply that the local solution is actually defined globally. In the sequence, we assume that

$$\eta = \frac{2L^2}{\sigma^2} < 1 \tag{7}$$

Lemma 2.1 Assume that (H) and (7) hold. Then for every $\tau \in \mathbf{R}$, T > 0, $\varphi \in C_{\rho}$ and $\varphi \in l^2$, there exists a positive constant $c = c(\tau, T, \varphi, \varphi)$ such that the solution (u, v) of Problem (4)-(6) satisfies

$$\beta \parallel u_t \parallel_{\rho}^2 +_{\alpha} \parallel v(t) \parallel^2 \leq c, t \in [\tau, \tau + T) \quad (8)$$

Proof Taking the inner product of (4) with βu in l^2 , we find that

$$\frac{1}{2}\beta \frac{d}{dt} \| u \|^{2} + \beta \nu \| Bu \|^{2} + \beta \lambda \| u \|^{2} = \beta(h(u(t-\rho_{0}(t))), u) - \beta \alpha(u,v) + \beta(u,f(t))$$
(9)

Taking the inner product of (5) with $\alpha \nu$ in l^2 , we get that

$$\frac{1}{2}\alpha \frac{\mathrm{d}}{\mathrm{d}t} \|v\|^2 = -\alpha\delta \|v\|^2 + \beta\alpha(u,v) + \alpha(v,g(t))$$
(10)

Summing up (9) and (10), we get

$$\frac{1}{2} \frac{d}{dt} (\beta \| u \|^{2} +_{\alpha} \| v \|^{2}) + \beta \nu \| Bu \|^{2} + \beta \lambda \| u \|^{2} + \alpha \delta \| v \|^{2} = \beta (h(u(t - \rho_{0}(t))), u) + \beta (u, f(t)) +_{\alpha} (v, g(t))$$
(11)

We now estimate the right-hand side of (11). The first term is bounded by

$$\begin{aligned} & |\beta(h(u(t-\rho_{0}(t))), u)| \leqslant \\ & \beta \|h(u(t-\rho_{0}(t))\| \|u\| \leqslant \\ & \frac{1}{4}\beta\lambda \|u\|^{2} + \frac{\beta}{\lambda} \|h(u(t-\rho_{0}(t))\|^{2} \leqslant \\ & \frac{1}{4}\beta\lambda \|u\|^{2} + \frac{\beta L^{2}}{\lambda} \|u(t-\rho_{0}(t))\|^{2} \end{aligned}$$
(12)

For the left two term on the right-hand side of (11), we have

$$\beta(u, f(t)) + \alpha(v, g(t)) \leq \frac{1}{4} \beta \lambda \| u \|^{2} + \frac{\beta}{\lambda} \| f(t) \|^{2} + \frac{1}{2} \alpha \delta \| v \|^{2} + \frac{\alpha}{2\delta} \| g(t) \|^{2}$$

$$(13)$$

By (11)-(13) we obtain

$$\frac{d}{dt} (\beta \| u \|^{2} + \alpha \| v \|^{2}) \leq$$

$$-(\beta \lambda \| u \|^{2} + \alpha \delta \| v \|^{2}) + \frac{2\beta L^{2}}{\lambda}$$

$$\| u(t - \rho_{0}(t) \|^{2} + \frac{2\beta}{\lambda} \| f(t) \|^{2} + \frac{\alpha}{\delta} \| g(t) \|^{2}$$
(14)

Let $\sigma = \min{\langle \lambda, \delta \rangle}$. Then it follows from (14) that

$$\frac{\mathrm{d}}{\mathrm{d}t}(\beta \parallel u \parallel^{2} + \alpha \parallel v \parallel^{2}) \leqslant
-\sigma(\beta \parallel u \parallel^{2} + \alpha \parallel v \parallel^{2}) +
\frac{2L^{2}}{\lambda}\beta \parallel u(t - \rho_{0}(t) \parallel^{2} + \frac{2\beta}{\lambda} \parallel f(t) \parallel^{2} +
\frac{\alpha}{\delta} \parallel g(t) \parallel^{2}$$
(15)

By Gronwall inequality, that for $t \ge \tau$, we have

$$\beta \| u(t) \|^{2} + \alpha \| v(t) \|^{2} \leq e^{-\sigma(t-\tau)} (\beta \| \varphi(0) \|^{2} + \alpha \| \varphi \|^{2}) + \frac{2L^{2}}{\lambda} \int_{\tau}^{t} e^{-\sigma(t-s)} \beta \| u(s-\rho_{0}(s) \|^{2} ds + \frac{2\beta}{\lambda} \int_{\tau}^{t} e^{-\sigma(t-s)} \| f(s) \|^{2} ds + \frac{\alpha}{\lambda} \int_{\tau}^{t} e^{-\sigma(t-s)} \| g(s) \|^{2} ds$$
(16)

From the condition (7), by using continuity, we obtain that there exist positive constants $\mu < \sigma$ and N such that $\|\varphi\|_{\rho} + \|\varphi\| \le N$ and

$$\frac{\|\varphi\|_{\rho}^{2} + \|\varphi\|^{2}}{N} + e^{\mu\rho} \frac{L^{2}}{(\sigma - \mu)\lambda} < 1$$
 (17)

hold. Then we prove that for $t \ge \tau$

$$\beta \| u(t) \|^{2} +_{\alpha} \| v(t) \|^{2} \leqslant dN e^{-\mu(t-\tau)} + (1-\eta)^{-1} I(t)$$
(18)

where

$$\begin{split} I(t) &= \max_{\tau \leqslant \leqslant t} (\frac{2\beta}{\lambda} \int_{\tau}^{\xi} \mathrm{e}^{-\sigma(\xi-s)} \| f(s) \|^{2} \, \mathrm{d}s + \\ &\frac{\alpha}{\delta} \int_{\tau}^{\xi} \mathrm{e}^{-\sigma(\xi-s)} \| g(s) \|^{2} \, \mathrm{d}s) \; . \end{split}$$

To this end, we first prove for any d>1,

$$\beta \| u(t) \|^{2} +_{\alpha} \| v(t) \|^{2} < dNe^{-\mu(t-\tau)} + (1-\eta)^{-1}I(t), t \geqslant_{\tau}$$
 (19)

If (19) is not true, then, from $\|\varphi\|_{\rho} + \|\varphi\| \le N$ and $\|u(t)\|$ and $\|v(t)\|$ are continuous, there must be a $t^* >_{\tau}$ such that

$$\beta \| u(t^*) \|^2 +_{\alpha} \| v(t^*) \|^2 \geqslant dN e^{-\mu(t^* - \tau)} + (1 - \eta)^{-1} I(t^*)$$
(20)

and

$$\beta \parallel u(t) \parallel < dNe^{-\mu(t-\tau)} + (1-\eta)^{-1}I(t), \tau - \rho \le t < t^*$$
(21)

Hence, it follows from (16) (17) (20) and (21) that

$$\beta \| u(t^*) \|^2 + \alpha \| v(t^*) \|^2 \leq e^{-\sigma(t^* - v)} (\beta \| \varphi(0) \|^2 + \alpha \| \varphi \|^2) + \frac{2L^2}{\lambda} \int_{\tau}^{t^*} e^{-\sigma(t^* - s)} \beta \| u(s - \rho_0(s) \|^2 ds + \frac{2\beta}{\lambda} \int_{\tau}^{t^*} e^{-\sigma(t^* - s)} \| f(s) \|^2 ds + \frac{2\beta}{\lambda} \int_{\tau}^{t^*} e^{-\sigma(t^* - s)} \| g(s) \|^2 ds < e^{-\mu(t^* - v)} (\beta \| \varphi(0) \|^2 + \alpha \| \varphi \|^2) + \frac{2L^2}{\lambda} \int_{\tau}^{t^*} e^{-\sigma(t^* - s)} (dN e^{qp} e^{-\mu(s - v)} + (1 - \eta)^{-1} I(t^*)) ds + \frac{2\beta}{\lambda} \int_{\tau}^{t^*} e^{-\sigma(t^* - s)} \| g(s) \|^2 ds \leq e^{-\mu(t^* - s)} \| g(s) \|^2 ds \leq e^{-\mu(t^* - s)} (\beta \| \varphi(0) \|^2 + \alpha \| \varphi \|^2) + \frac{2L^2}{\lambda} \int_{\tau}^{t^*} e^{-\sigma(t^* - s)} dN e^{qp} e^{-\mu(s - v)} ds + I(t^*) \leq \frac{\beta \| \varphi(0) \|^2 + \alpha \| \varphi \|^2}{\lambda} + \frac{2L^2}{\lambda} e^{qp} \int_{\tau}^{t^*} e^{-\sigma(\sigma - \mu)(t^* - s)} ds dN e^{-\mu(t^* - v)} ds + I(t^*) \leq \frac{\beta \| \varphi(0) \|^2 + \alpha \| \varphi \|^2}{\lambda} + \frac{2L^2}{\lambda} e^{qp} \int_{\tau}^{t^*} e^{-\sigma(\sigma - \mu)(t^* - s)} ds dN e^{-\mu(t^* - v)} ds + \frac{2L^2}{\lambda} e^{qp} \int_{\tau}^{t^*} e^{-\sigma(\sigma - \mu)(t^* - s)} ds dN e^{-\mu(t^* - v)} ds + \frac{2L^2}{\lambda} e^{qp} \int_{\tau}^{t^*} e^{-\sigma(\sigma - \mu)(t^* - s)} ds dN e^{-\mu(t^* - v)} dN e^{$$

which contradicts inequality (20). So inequality (19) holds for all $t \ge \tau$. Letting $d \rightarrow 1$ in inequality (19), we have inequality (18). The proof is complete.

Lemma 2.1 implies that the solution u is defined in any interval of $[\tau, T+\tau)$ for any T>0. It means that this local solution is, in fact, a global one.

Given $t \in \mathbf{R}$, define a translation θ_t on \mathbf{R} by $\theta_t(\tau) = \tau + t$, $\tau \in \mathbf{R}$ (23)

Then $\{\theta_t\}_{t\in \mathbf{R}}$ is a group acting on **R**.

We now define amapping $\Phi: \mathbf{R}^+ \times \mathbf{R} \times X_{\rho} \rightarrow X_{\rho}$, for Problem (4)-(6), where $X_{\rho} = C_{\rho} \times l^2$. Given $t \in \mathbf{R}^+$, $\tau \in \mathbf{R}$ and $\Psi_{\tau} = (u_{\tau}, v_{\tau}) \in X_{\rho}$, let $\Phi(t, \tau, \Psi_{\tau}) = (u_{t+\tau}(\cdot, \tau, u_{\tau}),$

$$v(t+\tau, \tau, v_{-})) \tag{24}$$

where $u_{t+\tau}(s, \tau, u_{\tau}) = u(t+\tau+s, \tau, u_{\tau}), s \in [-\rho, 0]$. By the uniqueness of solutions, we find that for every $t, s \in \mathbb{R}^+$ and $\tau \in \mathbb{R}$ and $\Psi_{\tau} \in X_{\rho}$,

 $\Phi(t+s,\tau,\Psi_{\tau}) = \Phi(t, s+\tau, (\Phi(s, \tau, \Psi_{\tau}))).$ Then we see that Φ is a continuous non-autonomous dynamical system on X_{ρ} .

In the following two sections, we will investigate the existence of a pullback attractor for Φ . To this end, we need to define an appropriate collection of families of subsets of X_{ρ} . Let $B_{\rho} = \{B_{\rho}(\tau): \tau \in \mathbf{R}\}$ be a family of nonempty subsets of X_{ρ} . Then B_{ρ} is called tempered (or subexponentially growing) if for every c > 0, the following holds:

$$\lim_{t\to-\infty} \mathrm{e}^{a} \| B_{\rho}(\tau+t) \|_{X_{\rho}} = 0,$$

where $x = (\varphi, \varphi)$. In the sequel, we denote by D_{ρ} the collection of all families of tempered nonempty subsets of X_{ρ} , i. e.,

 $D_{\rho} = \{B_{\rho} = \{B_{\rho}(\tau) : \tau \in \mathbf{R}\} : B_{\rho} \text{ is tempered}\}.$ From the condition (7), by using continuity, we obtain that there exists a positive constant $\mu < \sigma$ such that

$$\mu - \sigma + \frac{2L^2}{\lambda} e^{\rho} < 0 \tag{25}$$

holds. The following condition will be needed when deriving uniform estimates of solutions:

$$\int_{-\infty}^{\tau} e^{us} (\| f(s) \|^2 + \| g(s) \|^2) ds < \infty, \forall \tau \in \mathbf{R}$$
(26)

3 Uniform estimates of the solutions

In this section, we derive uniform estimates of solutions of Problem(4) \sim (6) which are needed for proving the existence and uniqueness of pullback attractor for Problem (4) \sim (6).

The estimates of solutions of Problem (4) \sim (6) in X_{ρ} are provided below. The symbol c is a positive constant which may change its value from line to line.

Lemma 3. 1 Assume that (H), (7) and (26) hold. Then for every $\tau \in \mathbf{R}$ and $D_{\rho} = \{D_{\rho}(\tau): \tau \in \mathbf{R}\} \in D_{\rho}$, there exists $T = T(\tau, D_{\rho}) > \rho$ such that for all $t \geqslant T$ and $(\varphi, \varphi) \in D_{\rho}(\tau - t)$, the solution (u, v) of (4)-(6) satisfies

$$\| u_{\tau}(\cdot, \tau - t, \varphi), v(\tau, \tau - t, \varphi) \|_{X_{\rho}}^{2} \leq 2 \frac{2\beta}{\chi^{\lambda}} e^{\lambda \rho} \int_{-\infty}^{0} e^{\lambda s} \| f(s + \tau) \| ds + 2 \frac{\alpha}{\chi^{\delta}} e^{\lambda \rho} \int_{-\infty}^{0} e^{\lambda s} \| g(s + \tau) \| ds$$

$$(27)$$

where $\gamma = \min\{\alpha, \beta\}$.

Proof Replacing t and τ in (15) by $\tilde{\omega}$ and $\tau^{-}t$, respectively, we have for $\tilde{\omega} >_{\tau} - t$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(\beta \parallel u(\tilde{\omega}, \tau - t, \varphi) \parallel^{2} + \alpha \parallel v(\tilde{\omega}, \tau - t, \varphi) \parallel^{2}) \leq \\
-\sigma(\beta \parallel u(\tilde{\omega}, \tau - t, \varphi) \parallel^{2}) + \alpha \parallel v(\tilde{\omega}, \tau - t, \varphi) \parallel^{2}) + \\
\frac{2L^{2}}{\lambda}\beta \parallel u(\tilde{\omega} - \rho(\tilde{\omega}), \tau - t, \varphi) \parallel^{2} + \\
\frac{2\beta}{\lambda} \parallel f(\tilde{\omega}) \parallel^{2} + \frac{\alpha}{\delta} \parallel g(\tilde{\omega}) \parallel^{2} \tag{28}$$

For simplicity, we denote $u(\tilde{\omega}) = u(\tilde{\omega}, \tau - t, \varphi)$ and $v(\tilde{\omega}) = v(\tilde{\omega}, \tau - t, \varphi)$. Then, let us define functions

$$V(\tilde{\omega}) = e^{u\tilde{\omega}} (\beta \parallel u(\tilde{\omega}) \parallel^2 +_{\alpha} \parallel v(\tilde{\omega}) \parallel^2),$$

$$\tilde{\omega} \geqslant_{\tau} - t - \rho,$$

where $v(\tilde{\omega}) = 0$, $\tilde{\omega} \in [\tau - t - \rho, \tau - t)$, and

$$U(\tilde{\omega}) \triangleq \begin{cases} e^{\mu(\tau-t)} \left(\beta \parallel \varphi \parallel_{\rho} + \alpha \parallel \varphi \parallel\right), \\ \tilde{\omega} \in \left[\tau - t - \rho, \tau - t\right) \\ e^{\mu(\tau-t)} \left(\beta \parallel \varphi \parallel_{\rho} + \alpha \parallel \varphi \parallel\right) + \\ \frac{2\beta}{\lambda} \int_{\tau - t}^{\tilde{\omega}} e^{\mu s} \parallel f(s) \parallel^{2} \mathrm{d}s + \\ \frac{\alpha}{\delta} \int_{\tau - t}^{\tilde{\omega}} e^{\mu s} \parallel g(s) \parallel^{2} \mathrm{d}s, \ \tilde{\omega} \geqslant \tau - t. \end{cases}$$

Now, we claim that

$$V(\tilde{\omega}) \leqslant U(\tilde{\omega}), \ \tilde{\omega} \geqslant_{\tau} - t$$
 (29)

If inequality (29) is not true, from the fact that $V(\tilde{\omega})$ and $U(\tilde{\omega})$ are continuous, then there must be a $\tilde{\omega}^* >_{\tau} - t$ such that

$$V(\tilde{\omega}) < U(\tilde{\omega}), \ \tilde{\omega} \in [\tau - t - \rho, \ \tilde{\omega}^*)$$
 (30)

$$V(\tilde{\omega}^*) = U(\tilde{\omega}^*) \tag{31}$$

where

$$\tilde{\omega}^* \triangleq \inf\{\tilde{\omega} >_{\tau} - t | V(\tilde{\omega}) > U(\tilde{\omega}) \},$$

and there is a sufficiently small positive constant $\Delta \tilde{\omega}$ such that

$$V(\tilde{\omega}) > U(\tilde{\omega}), \ \tilde{\omega} \in (\tilde{\omega}^*, \tilde{\omega}^* + \Delta \tilde{\omega})$$
 (32)

Calculating the upper right-hand Dini derivative of $V(\tilde{\omega})$ at $\tilde{\omega}$ and considering (31) and (32), we obtain

$$D^{+}V(\tilde{\omega}^{*}) = \limsup_{h \to 0^{+}} \frac{V(\tilde{\omega}^{*} + h) - V(\tilde{\omega}^{*})}{h} \geqslant \lim_{h \to 0^{+}} \frac{U(\tilde{\omega}^{*} + h) - U(\tilde{\omega}^{*})}{h} = \frac{2\beta}{\lambda} e^{\mu \tilde{\omega}^{*}} \| f(\tilde{\omega}^{*}) \|^{2} + \frac{\alpha}{\delta} e^{\mu \tilde{\omega}^{*}} \| g(\tilde{\omega}^{*}) \|^{2}$$

$$(33)$$

On the other hand, it follows from (28), we have

$$D^{+}V(\bar{\omega}^{*}) = \mu e^{i\bar{\omega}^{*}} (\beta \| u(\bar{\omega}^{*}) \|^{2} + \alpha \| v(\bar{\omega}^{*}) \|^{2}) + e^{i\bar{\omega}^{*}} D^{+}(\beta \| u(\bar{\omega}^{*}) \|^{2} + \alpha \| v(\bar{\omega}^{*}) \|^{2}) \leq (\mu - \sigma) e^{i\bar{\omega}^{*}} (\beta \| u(\bar{\omega}^{*}) \|^{2} + \alpha \| v(\bar{\omega}^{*}) \|^{2}) + \frac{2L^{2}}{\lambda} e^{i\bar{\omega}^{*}} \beta \| u(\bar{\omega}^{*} - \rho_{0}(\bar{\omega}^{*})) \|^{2} + \frac{2\beta}{\lambda} \| f(\bar{\omega}^{*}) \|^{2} + \frac{\alpha}{\lambda} \| g(\bar{\omega}^{*}) \|^{2}$$

$$(34)$$

Noticing that $U(\tilde{\omega})$ is monotone nondecreasing on $[\tau - t - \rho, +\infty)$, this, together with (30) and (31), yields

$$V(\tilde{\omega}^* - \rho_0(\tilde{\omega}^*)) < U(\tilde{\omega}^* - \rho_0(\tilde{\omega}^*)) < U(\tilde{\omega}^*) = V(\tilde{\omega}^*) \quad (35)$$
 which implies

$$\beta \| u(\bar{\omega}^* - \rho_0(\bar{\omega}^*)) \|^2 \leq e^{\varphi} (\beta \| u(\bar{\omega}^*) \|^2 +_{\alpha} \| v(\bar{\omega}^*) \|^2)$$
 (36)

It follows from (25) (34) and (36) that

$$\begin{split} D^{+}V(\tilde{\omega}^{*}) < & \left(\mu - \sigma + \frac{2L^{2}}{\lambda}e^{\mu\rho}\right)V(\tilde{\omega}^{*}) + \\ & \frac{2\beta}{\lambda} \parallel f(\tilde{\omega}^{*}) \parallel^{2} + \frac{\alpha}{\delta}e^{\mu\tilde{\omega}^{*}} \parallel g(\tilde{\omega}^{*}) \parallel^{2} < \\ & \frac{2\beta}{\delta}e^{\mu\tilde{\omega}^{*}} \parallel f(\tilde{\omega}^{*}) \parallel^{2} + \frac{\alpha}{\delta}e^{\mu\tilde{\omega}^{*}} \parallel g(\tilde{\omega}^{*}) \parallel^{2}, \end{split}$$

which contradicts (33). Until now, (29) has been proven to be true. Thus we get for $t > \rho$ and

$$-\rho \leqslant \xi \leqslant 0,$$

$$\beta \parallel u(\tau + \xi, \tau - t, \varphi) \parallel^2 +$$

 $\alpha \| v(\tau, \tau - t, \varphi) \|^{2} \leq$ $(\| \varphi \|_{\rho}^{2} + \| \varphi \|^{2}) e^{-\lambda(t+\xi)} +$

$$e^{-\lambda(t+\xi)} \frac{2\beta}{\lambda} \int_{\tau-t}^{\tau+\xi} e^{\lambda s} \| f(s) \|^2 ds +$$

$$e^{-\lambda(t+\xi)} \frac{\alpha}{\delta} \int_{t-t}^{\tau+\xi} e^{\lambda s} \| g(s) \|^2 ds \leqslant$$

$$(\|\varphi\|_{\rho}^{2} + \|\varphi\|^{2}) e^{\lambda \rho} e^{-\lambda t} + e^{\lambda \rho} e^{-\lambda t} \frac{2\beta}{\lambda} \int_{\tau-t}^{\tau} e^{\lambda s} \|f(s)\|^{2} ds + e^{\lambda \rho} e^{-\lambda t} \frac{\alpha}{\lambda} \int_{-t}^{\tau} e^{\lambda s} \|g(s)\|^{2} ds.$$

Since $(\varphi, \varphi) \in D_{\rho}(\tau - t) \in D_{\rho}$, we find that for every $\tau \in \mathbf{R}$ and $D_{\rho} \in D_{\rho}$, there exists $T = T(\tau, D_{\rho}) > \rho$ such that for all $t \ge T$ and $-\rho \le \xi \le 0$,

$$\beta \| u(\tau + \xi, \tau - t, \varphi) \|^{2} + \alpha \| v(\tau, \tau - t, \varphi) \|^{2} \leq 2 \frac{2\beta}{\lambda} e^{\lambda \varphi} \int_{-\infty}^{0} e^{\lambda s} \| f(s + \tau) \|^{2} ds + 2 \frac{\alpha}{\lambda} e^{\lambda \varphi} \int_{-\infty}^{0} e^{\lambda s} \| g(s + \tau) \|^{2} ds$$

This completes the proof.

Lemma 3. 2 Assume that (H),(7) and (26) hold. Then for every $\tau \in \mathbf{R}$, $D_{\rho} = \{D_{\rho}(\tau) : \tau \in \mathbf{R}\} \in D_{\rho}$ and $\varepsilon > 0$, there exist $T = T(\tau, D_{\rho}, \varepsilon) > \rho$ and $N = N(\tau, D_{\rho}, \varepsilon)$ such that for all $t \geqslant T$ and $(\varphi, \varphi) \in D_{\rho}(\tau - t)$, the solution (u, v) of $(4) \sim (6)$ satisfies

$$\sup_{-\rho \leqslant s \leqslant 0} \sum_{|i| \geqslant N} (|u_i(\tau + s, \tau - t, \varphi)|^2 + |v_i(\tau, \tau - t, \varphi)|^2) \leqslant \varepsilon$$
(37)

Proof We use an idea of cut-off function to establish the uniform estimates on the tails of the solution. Let θ be a smooth cut-off function satisfying $0 \le \theta(s) \le 1$ for $s \ge 0$ and $\theta(s) = 0$ for $0 \le s \le 1$; $\theta(s) = 1$ for $s \ge 2$. Let k be a fixed integer which will be specified later, and set $\widetilde{u} = (\widetilde{u}_i)_{i \in \mathbf{Z}}$ with $\widetilde{u} = \theta\left(\frac{|i|}{k}\right)u_i$.

Taking the inner product of (4) with $\beta \tilde{u}$ in l^2 , we find that

$$\frac{1}{2}\beta \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}|^{2} + \beta \nu (Bu, B\widetilde{u}) + \\
\beta \lambda \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}|^{2} = \beta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) h_{i} (u_{i}(t - \rho_{0}(t))) u_{i} - \beta \alpha \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) u_{i} v_{i} + \\
\beta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) u_{i} f_{i}(t) \tag{38}$$

Taking the inner product of (4) with $\tilde{\alpha \nu}$ in l^2 , we get that

$$\frac{1}{2}\alpha \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |v_i|^2 =$$

$$-\alpha \delta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |v_{i}|^{2} + \beta \alpha \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) u_{i} v_{i} + \alpha \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) v_{i} g_{i}(t)$$
(39)

Summing up (38) and (39), we get

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) (\beta |u_{i}|^{2} + \alpha |v_{i}|^{2}) + \\
\beta \nu (Bu, B\tilde{u}) + \beta \lambda \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}|^{2} + \\
\alpha \delta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |v_{i}|^{2} \leqslant \beta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) h_{i} (u_{i}(t - \rho_{0}(t))) u_{i} + \beta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) u_{i} f_{i}(t) v + \\
\alpha \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) v_{i} g_{i}(t) \tag{40}$$

We now estimate the terms in (40) as follows. First, we have

$$\begin{split} &\sum_{i \in \mathbf{Z}} \theta \Big(\frac{\mid i \mid}{k}\Big) \mid u_i \mid^2 (Bu , B\widetilde{u}) = \\ &\sum_{i \in \mathbf{Z}} (u_{i+1} - u_i) \left(\theta \Big(\frac{\mid i+1 \mid}{k}\Big) u_{i+1} - \theta \Big(\frac{\mid n \mid}{k}\Big) u_i\right) = \\ &\sum_{i \in \mathbf{Z}} \left(\theta \Big(\frac{\mid i+1 \mid}{k}\Big) - \theta \Big(\frac{\mid n \mid}{k}\Big)\right) (u_{i+1} - u_i) u_{i+1} + \\ &\sum_{i \in \mathbf{Z}} \theta \Big(\frac{\mid i \mid}{k}\Big) \mid u_{i+1} - u_i \mid^2 \geqslant \sum_{i \in \mathbf{Z}} \left(\theta \Big(\frac{\mid i+1 \mid}{k}\Big) - \theta \Big(\frac{\mid i \mid}{k}\Big)\right) (u_{i+1} - u_i) u_{i+1}. \end{split}$$

By the property of the function θ , we have

$$\left| \sum_{i \in \mathbf{Z}} \left(\theta \left(\frac{|i+1|}{k} \right) - \theta \left(\frac{|i|}{k} \right) \right) (u_{i+1} - u_i) u_{i+1} \right| \leqslant$$

$$\sum_{i \in \mathbf{Z}} \frac{\left| \theta' \left(\xi_i \right) \right|}{k} \left| u_{i+1} - u_i \right| \left| u_{i+1} \right| \leqslant$$

$$\frac{c_0}{k} \sum_{i \in \mathbf{Z}} \left| u_{i+1} \right|^2 + \left| u_i \right| \left| u_{i+1} \right| \leqslant \frac{c}{k} \| u \|^2,$$

which implies that

$$-\beta v(Bu, \widetilde{Bu}) \leqslant \frac{c}{k} \parallel u \parallel^{2}$$
 (41)

We now estimate the right-hand side of (40). The first term is bounded by

$$\begin{split} \left| \beta \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) h_i (u_i (t - \rho_0(t))) u_i \right| & \leqslant \\ \beta \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |h_i (u_i (t - \rho_0(t)))| |u_i| & \leqslant \\ \frac{1}{4} \beta \lambda \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |u_i|^2 + \\ \frac{\beta}{\lambda} \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |h_i (u_i (t - \rho_0(t)))|^2 & \leqslant \\ \frac{1}{4} \beta \lambda \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |u_i|^2 + \end{split}$$

$$\frac{\beta L^2}{\lambda} \sum_{i \in \mathcal{I}} \theta\left(\frac{|i|}{k}\right) |u_i(t - \rho_0(t))|^2 \tag{42}$$

For the left two term on the right-hand side of (40), we have

$$\beta \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) u_i f_i(t) v + \alpha \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) v_i g_i(t) \leqslant \frac{1}{4} \beta \lambda \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |u_i|^2 + \frac{\beta}{\lambda} \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |f_i(t)|^2 + \frac{1}{2} \alpha \delta \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |v_i|^2 + \frac{\alpha}{2\delta} \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k} \right) |g_i(t)|^2$$

$$(43)$$

By $(40)\sim(43)$ we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) (\beta |u_{i}|^{2} + \alpha |v_{i}|^{2}) \leqslant \\
-\beta \lambda \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}|^{2} - \alpha \delta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |v_{i}|^{2} + \\
\frac{2\beta L^{2}}{\lambda} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}(t - \rho_{0}(t))|^{2} + \\
\frac{c}{k} ||u||^{2} + \frac{2\beta}{\lambda} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |f_{i}(t)|^{2} + \\
\frac{\alpha}{\delta} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |g_{i}(t)|^{2} \tag{44}$$

Let $\sigma = \min\{\lambda, \delta\}$. It follows that

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) (\beta |u_{i}|^{2} + \alpha |v_{i}|^{2}) \leqslant \\
-\sigma\left[\beta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}|^{2} - \alpha \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |v_{i}|^{2}\right] + \\
\frac{2\beta L^{2}}{\lambda} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}(t - \rho_{0}(t))|^{2} + \frac{c}{k} ||u||^{2} + \\
\frac{2\beta}{\lambda} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |f_{i}(t)|^{2} + \frac{\alpha}{\delta} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |g_{i}(t)|^{2}$$

(45)

Futher,

$$\frac{\mathrm{d}}{\mathrm{d}t} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) (\beta |u_{i}|^{2} + \alpha |v_{i}|^{2}) \leqslant \\
-\sigma \left[\beta \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |u_{i}|^{2} - \alpha \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |v_{i}|^{2}\right] + \\
\frac{2L^{2}}{\lambda} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) \left[\beta |u_{i}(t - \rho_{0}(t))|^{2} + \\
\alpha |v_{i}|^{2}\right] + \frac{c}{k} ||u||^{2} + \frac{2\beta}{\lambda} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |f_{i}(t)|^{2} + \\
\frac{\alpha}{\delta} \sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) |g_{i}(t)|^{2} \tag{46}$$

By the similar argument as in Lemma 3.1, we get from (46) for any $t > \rho$ and $-\rho \le \xi \le 0$,

$$\sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) (\beta |u_{i}(\tau + \xi, \tau - t, \varphi)|^{2} + \alpha |v_{i}(\tau, \tau - t, \varphi)|^{2}) \leq \alpha |v_{i}(\tau, \tau - t, \varphi)|^{2}) \leq (\beta ||\varphi||_{\rho}^{2} + \alpha ||\varphi||^{2}) e^{-\lambda(t+\xi)} + \frac{c}{k} e^{-\lambda(t+\xi)} \int_{\tau - t}^{\tau + \xi} e^{\lambda s} ||u(s, \tau - t, \varphi)||^{2} ds + \frac{2\beta}{\lambda} e^{-\lambda(t+\xi)} \int_{\tau - t}^{\tau + \xi} e^{-\lambda s} \sum_{|i| \geqslant k} |f_{i}(s)|^{2} ds + \frac{\alpha}{\delta} e^{-\lambda(t+\xi)} \int_{\tau - t}^{\tau + \xi} e^{-\lambda s} \sum_{|i| \geqslant k} |g_{i}(s)|^{2} ds$$

$$(47)$$

It follows from Lemma 3. 1 that for any $\tau \in \mathbf{R}$, $(\varphi, \varphi) \in D_{\rho}, \varepsilon > 0$ there exist $T = T(\tau, D_{\rho}, \varepsilon) > \rho$ and $K_1 = K_1(\tau, D_{\rho}, \varepsilon)$ such that for $k \geqslant K_1$, $t \geqslant T$ and $-\rho \leqslant \xi \leqslant 0$

$$\frac{c}{k} e^{-\lambda(t+\xi)} \int_{\tau-t}^{\tau+\xi} e^{\lambda s} \| u(s, \tau-t, \varphi) \|^{2} dr \leqslant \frac{\varepsilon}{3}$$
(48)

which, together with (47), implies

$$\sum_{i \in \mathbf{Z}} \theta\left(\frac{|i|}{k}\right) (\beta |u_{i}(\tau + \xi, \tau - t, \varphi)|^{2} + \alpha |v_{i}(\tau, \tau - t, \varphi)|^{2}) \leq (\beta ||\varphi||_{\rho}^{2} + \alpha ||\varphi||^{2}) e^{-\lambda(t+\xi)} + \frac{\varepsilon}{3} + \frac{2\beta}{\lambda} e^{-\lambda(t+\xi)} \int_{\tau - t}^{\tau + \xi} e^{-\lambda s} \sum_{|i| \geqslant k} |f_{i}(s)|^{2} ds + \frac{\alpha}{\delta} e^{-\lambda(t+\xi)} \int_{\tau - t}^{\tau + \xi} e^{-\lambda s} \sum_{|i| \geqslant k} |g_{i}(s)|^{2} ds$$

$$(49)$$

We have from $(\varphi, \varphi) \in D_{\rho}(\tau - t)$ that there exists $T_1 = T_1(\tau, D_{\rho}, \varepsilon) > 0$ such that for all $t \geqslant T_1$ and $-\rho \leqslant \xi \leqslant 0$,

$$(\beta \parallel \varphi \parallel_{\rho}^{2} +_{\alpha} \parallel \varphi \parallel^{2}) e^{-\lambda(t+\xi)} \leqslant$$

$$(\beta \parallel \varphi \parallel_{\rho}^{2} +_{\alpha} \parallel \varphi \parallel^{2}) e^{\lambda \rho} e^{-\lambda t} \leqslant \frac{\varepsilon}{3}$$
(50)

We have from (26) that there is a $N_1 = N_1(\tau, \epsilon) > 0$ such that for all $k \ge N_1$,

$$\frac{2\beta}{\lambda} e^{\lambda \rho} e^{-\lambda t} \int_{-\infty}^{0} e^{-\lambda r} \sum_{|i| \ge k} |f_{i}(s+\tau)|^{2} dr + \frac{\alpha}{\delta} e^{\lambda \rho} e^{-\lambda t} \int_{-\infty}^{0} e^{-\lambda r} \sum_{|i| \ge k} |f_{i}(s+\tau)|^{2} dr \le \frac{\epsilon}{3}$$
(51)

Note that

$$\begin{split} \sup_{-\rho \leqslant \leqslant 0} & \sum_{|i| \geqslant 2k} (\beta |u_i(\tau + \boldsymbol{\xi}, \tau - t, \varphi)|^2 + \\ & \alpha |v_i(\tau, \tau - t, \varphi)|^2) \leqslant \\ & \sup_{-\rho \leqslant \leqslant 0} & \sum_{i \in \mathbf{Z}} \theta \left(\frac{|i|}{k}\right) (\beta |u_i(\tau + \boldsymbol{\xi}, \tau - t, \varphi)|^2 + \\ & \alpha |v_i(\tau, \tau - t, \varphi)|^2), \end{split}$$

which along with $(49) \sim (51)$ we conclude the

Existence of pullback attractors

In this section, we establish the existence of D_o-pullback attractor for the non-autonomous dynamical system Φ associated with the problem $(4)\sim(6)$.

Lemma 4.1 Assume that (H) (7) and (26) hold. Then for every $\tau \in \mathbf{R}$ and $D_{\rho} = \{D_{\rho}(\tau) : \tau \in \mathbf{R} \}$ \mathbf{R} $\in D_{\rho}$, there exists $T = T(\tau, D_{\rho}) > \rho$ such that usatisfies that $u_{\tau}(\cdot, \tau - t, \varphi)$ is equicontinuous in l^2 .

Denote by $P_k u = (u_1, u_2, \ldots, u_k,$ $0, 0, \ldots$), for $u \in l^2$ and $k \in \mathbb{N}$. By Lemma 3.2, for $\varepsilon > 0$, there exists $T = T(\tau, \varepsilon) > \rho$ and large enough integer $N = N(\tau, \epsilon)$ such that for all $t \ge T$,

$$\max_{-\rho \leqslant \kappa \leqslant 0} \| (I - P_N) u(\tau + s, \tau - t, \varphi) \|^2 < \frac{\varepsilon}{3}$$
(52)

Let $u_1 = P_N u$. By Lemma 3.1, it follows from (4) and the equivalence of norm in finite dimensional space that there exists $T = T(\tau) > \rho$ such that for all $t \ge T$,

$$\int_{\tau-\rho}^{\tau} \| \frac{\mathrm{d}}{\mathrm{d}r} u_1(r, \tau - t, \varphi) \|^2 \mathrm{d}r \leqslant c$$
 (53)

where $c = c(\tau)$ is a positive number. Without loss of generality, we assume that $s_1, s_2 \in [-\rho, 0]$ with $0 < s_1 - s_2 < 1$. Then for any fixed $\tau \in \mathbf{R}$,

$$\|u_{1}(\tau + s_{1}, \tau - t, \varphi) - u_{1}(\tau + s_{2}, \tau - t, \varphi)\| \leq \int_{\tau + s_{2}}^{\tau + s_{1}} \|\frac{du_{1}(r, \tau - t, \varphi)}{dr}\| dr \leq \left(\int_{\tau - \rho}^{\tau} \|\frac{du_{1}(r, \tau - t, \varphi)}{dr}\|^{2} dr\right)^{\frac{1}{2}} \\ |s_{1} - s_{2}|^{\frac{1}{2}} \leq c |s_{1} - s_{2}|^{\frac{1}{2}}$$
(54)

which implies that there exits a constant $\zeta = \zeta(\varepsilon) > 0$ such that if $|s_1-s_2| < \zeta$, then

$$\| u(\tau + s_2, \tau - t, \varphi) - u(\tau + s_1, \tau - t, \varphi) \| < \frac{\varepsilon}{3}$$

which along with (52) implies that for all $t \ge T$,

$$\| (I-P_N)u(\tau+s_1, \tau-t, \varphi) \| \leqslant \varepsilon.$$

This completes the proof.

As for the compactness in l^2 in Ref. [16] one can easily verify the the following compactness criteria in $C_{\rho} = C([-\rho, 0], l^2)$ by means of uniform tail estimates.

Lemma 4. 2 Let $\{u^n\}_{n=1}^{\infty} = \{(u_i^n)_{i \in \mathbb{Z}}\}_{n=1}^{\infty} \subseteq$ C_{ρ} . Then $\{u^n\}_{n=1}^{\infty}$ is relative compact in C_{ρ} if and only if the following conditions are satisfied:

- (i) $\{u^n\}_{n=1}^{\infty}$ is bounded in C_{ρ} ;
- (ii) $\{u^n\}_{n=1}^{\infty}$ is equicontinuous;
- (iii) $\limsup_{k\to\infty} \limsup_{n\to\infty} \sup_{-\rho\leqslant k\leqslant 0} \sum_{|i|\geqslant k} |u_i^n|^2 = 0.$

Theorem 4.3 Assume that (H), (7) and (26) hold. Then, the non-autonomous dynamical system Φ has a unique D_{ρ} -pullback attractor A_{ρ} = $\{A_{\rho}(\tau): \tau \in \mathbf{R}\} \in X_{\rho}.$

> **Proof** For $\tau \in \mathbb{R}$, denote by $K(\tau) = \{(u, v) \in X_{\rho} : (\|u\|_{\rho}^{2} + \|v\|^{2}) \leq$ $M(\tau)$,

where

$$M(\tau) = 2 \frac{2\beta}{\chi \lambda} e^{\lambda \rho} \int_{-\infty}^{0} e^{\lambda s} \| f(s+\tau) \|^{2} ds + 2 \frac{\alpha}{\chi \delta} e^{\lambda \rho} \int_{-\infty}^{0} e^{\lambda s} \| g(s+\tau) \|^{2} ds.$$

Firstly, we know from Lemma 3. 1 that Φ has a D_{ρ} -pullback absorbing set $K(\tau)$. Secondly, since Lemma 3. 1, 3. 2 and 4. 1 coincide with all the conditions of Lemma 4. 2, Φ is D_{ρ} -pullback asymptotically compact in X_{ρ} . Hence the existence of a unique D_{ρ} -pullback attractor for the nonautonomous dynamical system Φ follows from Proposition 2. 7 in Ref. [18] immediately.

References:

- Bates P W, Lu K, Wang B. Attractors for lattice $\lceil 1 \rceil$ dynamical systems [J]. Bifur Chaos Appl Sci Engrg, 2001, 11: 143.
- [2] Xu L, Zhang J J, Ma Q Z. Existence of pullback Dattractors for non-autonomous suspension bridge equation of Kirchhoff-type [J]. J Sichuan Univ: Nat Sci Ed (四川大学学报:自然科学版), 2020, 57:657.
- [3] Gu A, Kloeden P E. Asymptotic behavior of a nonautonomous p-Laplacian lattice system [J]. Bifur Chaos Appl Sci Engrg, 2016, 26: 1650174.

- [4] Karachalios N, Nistazakis H, Yannacopoulos A. Asymptotic behavior of solutions of complex discrete evolution equations: the discrete Ginzburg-Landau equation [J]. Discrete Contin Dyn Syst, 2007, 19: 711.
- [5] Li C, Hsu C, Lin J, et al., Global attractors for the discrete Klein-Gordon-Schrodinger type equations [J]. Differ Equat Appl, 2014, 20: 1404.
- [6] Li X, Wei K, Zhang H. Exponential attractors for lattice dynamical systems in weighted spaces [J]. Acta Appl Math, 2011, 114: 157.
- [7] Wang B. Dynamics of systems on infinite lattices [J]. Diff Equat, 2006, 221: 224.
- [8] Xiang X, Zhou S. Attractors for second order non-autonomous lattice system with dispersive term [J]. Topol Meth Nonlinear Anal, 2015, 46: 893.
- [9] Zhao C, Zhou S. Limit behavior of global attractors for the complex Ginzburg-Landau equation on infinite lattices [J]. Appl Math Lett, 2008, 21: 628.
- [10] Han X, Kloeden P E. Asymptotic behavior of a neural field lattice model with a Heaviside operator [J]. Physica D, 2019, 389: 1.
- [11] Han X, Kloeden P E. Sigmoidal approximations of Heaviside functions in neural lattice models [J]. Diff Equat 2020, 268: 5283.
- [12] FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane [J]. Biophys J, 1961, 1: 445.
- [13] Wang B. Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains [J]. Nonlinear Anal-Theor, 2009, 70: 3799.
- [14] Erik V V, Wang B. Attractors for lattice FitzHugh-Nagumo systems [J]. Physica D, 2005, 212: 317.

- [15] Wang B. Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems [J]. Bifurcat Chaos, 2007, 5: 1673.
- [16] Yan L, Wei W. Limit dynamics for the stochastic FitzHugh-Nagumo system [J]. Math Anal Appl, 2010, 11: 3091.
- [17] Zhou S, Wang Z. Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise [J]. Math Anal Appl, 2016, 441: 648.
- [18] Caraballo T, Morillas F, Valero J. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems [J]. Discrete Contin Dyn Syst, 2014, 34: 51.
- [19] Chen T, Zhou S, Zhao C. Attractors for discrete nonlinear Schrodinger equation with delay [J]. Acta Math Appl Sin Engl Ser, 2010, 26: 633.
- [20] Han X, Kloeden P E. Non-autonomous lattice systems with switching effects and delayed recovery [J]. Diff Equat, 2016, 261: 2986.
- [21] Li D, Shi L. Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay [J]. Differ Equ Appl, 2018, 24: 872.
- [22] Li D, Shi L. Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay [J]. Math Phys, 2018, 59: 032703.
- [23] Wang Y, Bai K. Pullback attractors for a class of nonlinear lattices with delays [J]. Discrete Contin Dyn Syst Ser B, 2015, 20: 1213.
- [24] Zhao C, Zhou S. Attractors of retarded first order lattice systems [J]. Nonlinearity, 2007, 20: 1987.

引用本文格式:

中 文: 王学敏. 含快变时滞的格 FitzHugh-Nagumo 系统的拉回吸引子[J]. 四川大学学报: 自然科学版, 2021, 58: 041002.

英文: Wang X M. Pullback attractors for lattice FitzHugh-Nagumo systems with fast-varying delays [J]. J Sichuan Univ: Nat Sci Ed, 2021, 58: 041002.