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Pullback attractors for lattice FitzHugh-Nagumo
systems with fast-varying delays
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(School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China)

Abstract: We investigate the dynamical behavior of lattice FitzHugh-Nagumo equations with fast-varying
delays and prove the existence and uniqueness of pullback attractor for the equations. Generally, stud-
ying the attractors of time-varying delay equations require that the derivative of the delay term is less
than 1 (slow-varying delay). In this paper, by using some differential inequality techniques, we remove
this constraint. Thus our method can be used to deal with equations with fast-varying delays.
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. FitzHugh-Nagumo system arises as a model de-
1 Introduction L : - .

scribing the signal transmission across axons in
[12]

Lattice differential equations have many ap-

neurobiology The asymptotic behavior of a

plications where the spatial structure has a dis- FitzHugh-Nagumo system was investigated in
crete character. Wang et al.'” used the idea of Refs. [13-15]. The results were extended to sto-
‘tail ends’ estimates on solutions and obtained a chastic, see for instance Refs. [ 16-17 ]. Since

result concerning the existence of a global attract- time-delays are frequently encountered in many

or for a class of reaction-diffusion lattice systems.
Later on, their results were extended to various

problems, see for instance, Refs. [ 2-11]. The

Wi AR 2020-11-19

practical systems, which may induce instability,
oscillation and poor performance of systems, de-

lay lattice systems then arise naturally while these
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delays are taken into account. Recently, attract-
ors of delay lattice systems have been considered
in Refs. [18-24]. The existing results of studying
attractors for time-varying delay equations require
that the derivative of the delay term be less than 1
(slow-varying delay). By using differential ine-
quality technique, our results remove the con-
straints on the delay derivative. So we can deal
with the lattice FitzHugh-Nagumo systems with
fast-varying delays (without any constraints on
the delay derivative).

Motivated by the discussions above, we
study the dynamical behavior of the following lat-
tice FitzHugh-Nagumo system with fast-varying
delays: for t€R and i€ Z,

d(it[i +v(2u; T U+ T U ) +/1u, =
hiCu; (t —po (1)) —av; +fi(1)y t>7 (1)
dclll;izia'vl +‘8u,+g,(t)7l‘>z‘ (2)

with the initial condition

u;(t+s) =@, (), 0:(0) =g, s €[ —p, 0] (3)
where u;, v; is the unknow value function, y, A,
as 0, B, p are positive real constants, oo €
C(R, [0, p])is an adequate given delay function
() = (fi(®)ieg € Li. (R, I*) and g (1) =
(gi(D)ieg €LE. (R, ) is defined later) are
given time dependent sequences, h; is a nonlinear
function satisfying certain conditions, ¢; €
C(R, [0, p]) andg; €R.

This paper is organized as follows. In Section
2, we prove that the lattice system (1)-(3) gener-
ates a non-autonomous dynamical system. In Sec-
tion 3, we derive a priori estimates on the solu-
tions to (1)-(3). In Section 4, we proof the ex-
istence and uniqueness of pull-back attractor for

the lattice systems.

2 Priori estimates

In this section, we establish the existence of a
continuous non-autonomous dynamical system
generated by System (1)-(3) and derive some pri-
ori estimates which will be needed for proofing

the existence of a global attractor. We formulate

System (1)-(3) as an abstract ordinary differenti-
al equation. To this end, we denote by * the Hil-
bert space defined by

lz - {u - (u,»);GZ:Zu,Z <+ OO}

€7
with the norm | « | and inner product ( ¢, ¢ )
1
given by lu | = (Zu,)y ,(uyv) = Zuivi for
icZ i€Z

each u=(u;)ie. €2, v="_»v;)we. €*. Define the
linear operators A,B,B* :[*—>[* as

(Bu);, =ui1 —u,;»

(B w);=ui— —u;,

(Aw);=—u;— t2u; —uii1»
for each i €Z. Then

A=BB* =B* B,

(B*u,v) =(u,Bv) ,u,v€l’.
Denote

o() ={@; () }icz>s €[ —p,0]
and ¢={¢; }cz. Denote by u, the function defined
on [ —p,0] according to the relation

wu, () =Cuy(s))icz =(u;i (t+5))ies =

u(t+s),s€l —p,0],

and let C, = C ([ — p, 0], ) with the
maximum norm

I, = sup, I ¢ I ,peC,.

Then System(1)-(3) can be rewritten as

% AU Au=hu(t —po (1)) —av+ (1),
. €9
%:—3U:‘8u+g(t)» >t )

with the initial condition

ulc+s) =¢(s), v(c) =¢, s€[ —p,0] (6)
where u=(u;)ic,,

hCut—po (1)) =h; (u:(t—po(1)))ic,s

SO=Cfi1))ie, g =(g; (1)) i,
¢=(¢:)ic, and o= (¢,);e,. We make the following
assumptions on h;, i €Z. For each i €Z, h; is a
nonlinear function satisfying the following as-
sumption;

(H) h;(0) =0 and h; is Lipschitz continuous
uniformly with respect to i, that is, there is a
positive constant L, independent of i, such that
for all s,,5, €R,

[hiCs1) —hi(s) | <L |si —s2|.
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In fact, by (H) we find that

I 2Cuw) —h(o) | <L lu—vll, u,v€l’.
Then it follows from the standard theory of ordi-
nary differential equations that there exists a u-
nique local solution (u,v) for System (4)-(6).
The following estimates imply that the local solu-
tion is actually defined globally. In the sequence,

we assume that

2
=<1 %
Lemma 2.1 Assume that (H) and (7)

hold. Then for every t€ER, T>0,0€C, and ¢ €
[*, there exists a positive constant ¢ =c(z, T, @, ¢)
such that the solution (u, v) of Problem (4)-
(6) satisfies
B lu l}+a v [*<cst€lc,c+T) ()
Proof Taking the inner product of (4) with
Bu in I*, we find that

1 d , )
?ﬁg\\uﬂ“ﬂLﬁv [Bu >+ lul?=

BChCu(t—p0 (D)) s10) —alutsv) +3Cus f(D)
(9

Taking the inner product of (5) with av in /*, we

get that
1 d . )
Say, [oll?==a6 | vll*+LaCu,v) +
alv,g()) (10

Summing up (9) and (10), we get
T g lul+a ol + I Bull?+

BA Mu 1*+ad o ll* =BChu(t—p, (1)),
w) +RCu, f(1)) +a(v,g()) (1D
We now estimate the right-hand side of (11).
The first term is bounded by
| BChCu(t—po (D)) ) | <
Bl hCult—po (o)) | lTull <

Tl Rt py ) 117 <

B e 2 G o 1 a2y

For the left two term on the right-hand side of
(11), we have

Blus f(D) +alosg (D) <T@ llu |l +
ﬁi WONEES =Y R ATICHE
(13)

By (11)-(13) we obtain

dgluli+a lvlH=
2
@ l? e o 12+

luGe—po @ 1221 0 1242 g |1

(1)
Let s =min{), 8}. Then it follows from (14) that
%(,@ lull?+a o<

0B llull®+a lloll*)+

2L°
A

B lutt—p 1"+ per 12+

§ g |? (15)

By Gronwall inequality, that for =7, we have
B lulo) " +a vl [|*<
e OB (D) [P +a e l*)+

2L2 ! —o(l—s 2

TLQ OB uls —po () || *ds +

Z@ K —o(1—s) . 2 .

: Jre | £C) [ 2ds +

%J:e"’“’“ | () [ 2ds (16)

From the condition (7), by using continuity, we
obtain that there exist positive constants ;<<¢ and
N such that [¢ |, + ¢ | <N and

le Hi; Lo ® | o (aE;M <1 an
hold. Then we prove that for t=¢
B llu@) I”+a o [*<
dNe # 2 +(1—p 1) (18)

where

1) = max@@jéefﬂﬁ | £Cs) 1l 2ds +

et A T

% J;ef"(e“’) I g(s) I2ds) .

To this end, we first prove for any d >1,
B lulo) " +a vl [*<
dNe 2 +(1—p 1), t=1 a9vy
If (19) is not true, then, from [gll,+ [ ¢ [l <
Nand [ u(z) | and |l v(#) || are continuous,
there must be a ¢* >z such that
B luCt") I +a o) [*=
dNe “" 2+ —p '1G") (20)

and
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Blu || < We now define amapping ®: R" X RX X, —>
dNe 2 +(1—p 1) e —p<t<t" X, for Problem (4)-(6), where X, =C, X .

Q2D
Hence, it follows from (16) (17) (20) and
(21) that
B llut™) " +a o) [*<
e (O P 4a eI+

2L J e R [ uls — o () [[2ds +
%@J e | F(s) |2ds +

gJ e | g(s) [ 2ds <

e PR (0 12 +a gl +
ZTLZ J eV (dNere ™ 4

A —p "I ))ds +
Z@JI e | £ | 2ds +

A e

%J e |l g(s) | %ds <

e B (0 17 +a llgl?) +
2L?

/1 JI eV Nere r O ds +
2 "
L q—praes |

Vs +H 1) <

Ble® > +a llel?®
N .

2L°
A

p (1 1) 167 <
Blo 2 +a llel?
[ N .

t : * *
e J e*d(ﬁ/z)(l —s) ds:|dNeﬂz(r —) +
T

2L - -
» w(t" —o) _ 1 *
¢ A(r#)]dNe A e <
dNef;z(r**ﬂ + (1 — ‘,7)711(t'x ) (22)

which contradicts inequality (20). So inequality
(19) holds for all t=7. Letting d—1 in inequality
(19), we have inequality (18). The proof is com-
plete.

Lemma 2. 1 implies that the solution u is de-
fined in any interval of [z, T+7) for any T>0. It
means that this local solution is, in fact, a
global one.

Given ¢ €R, define a translation , on R by

0,(0)=ct+t, t€R (23)
Then {0, },cxr is a group acting on R.

Given 1 €R", r€R and ¥, = (u,,v,) €X,, let
@(taf9q,r):(u/+1< M
v(t+tr, 7, v)) 24)

where u,+. (s, 7o u.) =u(t tz+s, o u,)s s€

2Ty MT>9

[ —p,0]. By the uniqueness of solutions, we find
that for every #,s €R" and r€R and ¥, €X,,

O(t+s,c.,¥,)=0(t, s+, (OCs, 7, T.))).
Then we see that @ is a continuous non-autono-
mous dynamical system on X,.

In the following two sections, we will inves-
tigate the existence of a pullback attractor for ®.
To this end, we need to define an appropriate col-
lection of families of subsets of X,. Let B, =
{B,(z): €R}be a family of nonempty subsets of
X,. Then B, is called tempered (or subexponen-
tially growing) if for every ¢ >0, the following
holds:

lime* | B,(z+2) | x, =0,

P
where x = (¢, ¢). In the sequel, we denote by D,
the collection of all families of tempered nonemp-
ty subsets of X, 1. e.

D,={B,={B,(t):t €R}:B, is tempered}.
From the condition (7), by using continuity, we
obtain that there exists a positive constant p<<g
such that

2L°
A
holds. The following condition will be needed

pn—o+ e <0 (25)

when deriving uniform estimates of solutions:
|" e 17+ e 1 <

3 Uniform estimates of the solutions

In this section, we derive uniform estimates
of solutions of Problem(4)~(6) which are needed
for proving the existence and uniqueness of pull-
back attractor for Problem (4)~(6).

The estimates of solutions of Problem (4) ~
(6) in X, are provided below. The symbol ¢ is a
positive constant which may change its value from

line to line.

041002-4
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Lemma 3. 1 Assume that (H), (7) and
(26) hold. Then for every r € R and D, =
{D,(t):t€R} €D,, there exists T=T(z, D,) >
o such that for all t=T and (¢, ¢) €D, (z —1),
the solution (u, v) of (4)-(6) satisfies

lucCos o=t @)y vles o=t @) |5 <

0
2)%?64" J, ‘e*" I fCs 42 [ ds +

0
2 %e@ J,, ‘e*" [ gCs+o) Ilds @27

where y =min{a, f}.
Proof Replacing ¢ and 7 in (15) by @ and

r—t, respectively, we have for o >7—1¢,
d } ,
&(,8 luwsz—t, @) II*+

a llvl@, c—t, @) D)<
70'(ﬂ Hu(d)’ T 1, gD) H2+
a lvlw, t—t, @) II°) +

217
A

ﬂ H u<d)7{0<d))9 T L, [ H2+

%@ | f@) 1+ g |1° (28)

For simplicity, we denote u(w) =u(w, z—t, ¢)
and v (0) = v (w, 7 —t, ¢). Then, let us
define functions
Vo) =e* B [lul@) | * +a [ v@) %),
W=t 1P,
where v(w) =0, @€ [~ —p, 1), and
B loll, talel),
w € [r*t*p, T—1)
B lell, tallell) +

Ulw) & o
%@j e | £Cs) | 2ds +
A PCY R
Now, we claim that
Vo) <U(w), o=r—t (29)

If inequality (29) is not true, from the fact that
V(w) and U(w) are continuous, then there must

be a @* >z —t such that

V(o) <U(@), o€ [z—t—p, ®") (30)
Ve*)=U(w*) (3D
where

o* Ainf{o>r—1| V(o) >U(w) },
and there is a sufficiently small positive constant

Aw such that

Vo) >U(@), w€(w”, " +Aw) (32)
Calculating the upper right-hand Dini derivative of
V(w) at w and considering (31) and (32), we ob-

tain

D V") —limsup? @ +h})l V)
h—0"

UGo* +h) —U@*) _
h

limsup
h0"

%@e@* I f@ ) 17 +8e I g@ ) |*

(33)
On the other hand, it follows from (28), we
have
D'V ) =pe” (B llu(e™) ||*+
a [v(@ ) ) +e” DY lul@) |7+
a llv@) [H<(u—e” B lu@ ) |?+

2 *
@ lot@) |19+ gl uto

N - FICEP N R

% | g(@™) ||? (34)

Noticing that U(w) is monotone nondecreasing on
[t—t—p, +oo), this, together with (30) and
(31), yields
V(o™ —pp (@) <
U(wo" —py(0)) <U(w") =V(o*) (35
which implies
B lute” —py(@™)) [|*<
e (B lu@ ) [ +a lovl@*) %) (36)
It follows from (25) (34) and (36) that
D V)< (u—ot i )via +
Bl f@ I+ g 7=
B I f@ ) 17 +5e g™ |1,
which contradicts (33). Until now, (29) has
been proven to be true. Thus we get for >p and
—p<£<0,
B lulc+& v—t, ) 17+
a lolzs c—1t, @ |7 <
(Il + lel?)e?™® +

cte 2
Gt %5 J e £ | ds +

Tt

oo [T g ) ds <
5 g(s s <

Tt

041002-5
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(lll2+ lgl2)ere™ +

T 2
o %QJ & I £ | ds +

i 2
eve™ %J e gl |l ds.
Tt

Since (¢, @) €D,(z—1) €D, , we find that for ev-
ery t€R and D, € D,, there exists T=T(z, D,) >p
such that for all 1 =T and —p=<<¢<00,

B lulc+& c—t, @ |7+
=t |7 <

a H 'U(Z"

2
2 %@e@ jowe“ I fCs+o) Il ds+

0 2
2 %e@ J,,.e)\s lgCs+o [ ds

This completes the proof.
Lemma 3.2 Assume that (H),(7) and (26)
hold. Then for every r€R,D, ={D,(z):t €ER} €

D, and e >0, there exist T=T(z, D,, e) >p and

N=N(z, D,, e such that for all :Z=T and (¢, ¢) €
D,(z—1), the solution (u, v) of (4)~(6) satis-
fies

sup E (Ju;(c+ss 70—t go)\z +

TSSO TeN
—1, go)‘z)ée (37)

We use an idea of cut-off function to

| v (s T

Proof
establish the uniform estimates on the tails of the
solution. Let @ be a smooth cut-off function satis-
fying 0<<0(s) <<1 for s=0 and 0(s) =0 for 0 <{s<<
1; 0(s) =1 for s=2. Let k be a fixed integer which

will be specified later, and set % =(%;);cz with 1 =

o e

Taking the inner product of (4) with g @ in
[?, we find that

(i)

>+ 8y (Bu, Ba)+

BAZH(M> —320( )h Cu, (1 —
00 ())u; —ﬂa20< >u,v,»+

€7
52@(‘1‘) FAO) (38)

€7
Taking the inner product of (4) with gvin /*, we

get that

; dz‘Z@(‘T)

€7

aage(k) v, Jrﬁaé@(,g)uv +
aZ@(

> ) (D

Summmg up (38) and (39), we get
il

2 dt2‘9< )

Bv (Bu, Bu)+ﬁ,\2 (‘l‘) u,-

a6§0(k> <ﬁ2 (

00 (DN, +52@(%

i€z
Lily,
aiezzﬁ( kl >‘U[g,-(t)

We now estimate the terms in (40) as follows.

39

1 2)+

]

2+

)h (u,(t —
)u,»f;(t)er

(40)

First, we have

2‘9“1‘) Ba) =
>0 (i *u)( <‘l+1‘ ) Uin *6(%)141.) =

€71

z;<e<lzl> (1L )) s = +
So( > (o) -

5(%))(“;\1 *u,')unl-

By the property of the function §, we have

_—

)‘urH —u;

3 (L)~ ) s —ou| =
\e<s>\ B
; ‘u u

‘um ‘

?02 ‘%‘H‘ZJV‘M;

€7
which implies that

<ki la %,
—Bo(Bu, Eu)gki E (41)

We now estimate the right-hand side of (40).
The first term is bounded by

g0l

>h (u:(t—py (DNu, | <

=
ﬁ;6<1> i (= py
4&;5(1> t

ﬁgﬁ( ) (st — o (O ]2 <
ISR

041002-6
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For the left two term on the right-hand side of
(40), we have

520(‘1‘ Juif <z>v+a2@(‘7) (D <

)\u (L — o ()| (42)

€7 ez
SIC S
B8 Lily, /
;a( e IPAGIERE
a8;6’<>
2@(“‘)@(0\2 (43)
16Z
By (40)~(43) we obtain
450l @lul valolh <
—w;,%k) O TSI
LE@(‘ ‘)\uu o () ]? +
€L
£ ul? +2 ; (M) FAGIEE:
%; (‘7)\&0)\2 (44)
Let =min{A, §}. It follows that
G205l @l alulo=
S SIS (O IR
8L}

o l‘)\u@—@(z))\u— e 112 +

2,0\
ﬁfée(;)ﬁmz “;e( ) OIE
(45)
Futher,
;@(k) wl? ta vl <
o)l e o) 1l ]+

Zf{ Za(‘k‘

€7

)[ﬁ\u (t—p ) ]? +

wl? +2§29(‘ ‘)

€7

(46)

a26<

€7

)\gm\)

By the similar argument as in LLemma 3. 1, we get

from (46) for any 1>p and —p=<<£<0,

041002-7
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)(ﬁ\u,-<r+s,

alv(e, c—t, @) <
Blel;+a llell?)e™® +

r—ty @) |* +

C o

e 2
Lored [T utsy ety @) | ds +

H,
%é)e ”“L‘E)J ée A 2 | fi(s) | 2ds +

Tt ‘ ‘Sk

%eﬂ“'pj e 2 | g, (s) |2 ds

il =k

It follows from Lemma 3. 1 that for any € R,
(s @) €D,,e>0 there exist T=T(z, D,, e) >p
and K, =K, (¢, D,, e)such that for k=K,, t =T
and —p<<6<0

¢ e [T ’ €
Lot [Te utsy -1, @) | dr< £
k Tt 3

(48)

47

which, together with (47), implies
Ze(‘l‘ )8 luitcte

€7

— 1, SD)‘Z+
"U,‘(Ta T 1, SD)‘ )<

(B H90”2+a Hgouz)eﬂmﬁv L&

3
Zé)e**““) J e D) £l ds +
A 1 ‘ ‘//,
ot
%eﬂ“ﬁ) J é:e*“ 2 | g, (s) |2 ds (49

il =k
We have from (¢, ¢) €D,(z—1t) that there exists
T,=T:(zs D,se) >0 such that for all t=T; and
—o<£<0,

B lellita lgll*)e <

B lgl;,+a lgll*)eve™ <% (50)
We have from (26) that there is a N, =N, (z, ¢) >0
such that for all #=N;,
0
%ﬁe}ﬂe’”J e D) | fiGHo | Pdr +
e L
o JO e ) | fiGHo]dr <€
) o e 3
GD
Note that
sup 2 (%] lu;(c +& r—1t, 90)\2 +
TOSED | T >
alvi(z, t—1t, 90)‘2) <
sup Z@(‘?)(ﬁ\ui(rﬂL& T— 1, <p)\2 +
—p<ES0 €7
a — 1, 90)‘2)3
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which along with (49) ~ (51) we conclude the

proof.

4 Existence of pullback attractors

In this section, we establish the existence of
D,-pullback attractor for the non-autonomous dy-
namical system @ associated with the problem

(4~ (6).

Lemma 4.1 Assume that (H) (7) and (26)
hold. Then for every t €R and D, ={D,(z):c €
R} €D,, there exists T=T(z, D,) >p such that u

satisfies that u, ( » ,z —1, ¢) is equicontinuous

in /2.
Proof Denote by P = (uyy s ooy tps
0,0, ...), foru€l? and k €N. By Lemma 3. 2,

for >0, there exists T=T(z, &) >p and large e-
nough integer N=N(z, ¢) such that for all t =T,

max | (I=Pyulzts, t—ts @) ||)<§

=

(52)
Let u;, = Pyu. By Lemma 3. 1, it follows from
(4) and the equivalence of norm in finite dimen-
sional space that there exists T =T (¢) >p such

that for all t=T,

j;w I e,

where ¢ =c(7) is a positive number. Without loss

2
=t | dr <c (53)

of generality, we assume that s;, s, €[ —p, 0]
with 0<<s, —s, <<1. Then for any fixed r €R,

lw(+sist—ts9) —wlctsn,c—t, o | <
Jz—n I dul(r,s ts @) ldr <
Ttsy r
‘ dn(ra t— 10 @ | 2 \F
(jr? H = I ar)
‘51 — S % < ¢ ‘Sl — S % (54)

which implies that there exits a constant {={¢(e) >0
such that if | s —s, | <¢, then

lulrts,y v, @) —

ulztsi, t—t, @) |l <§

which along with (52) implies that for all t=T,
luCetsys v—ts @) —ulzcts, t—t, @) | <
| Pyu(zc+sys v—1, ©) —
Pyu(ztsi. c—t. @) | +
I (I =Py u(r+szs 71, ©) | +

(I —=Px)ulztsi, t—t, ¢) || <e.
This completes the proof.

As for the compactness in /2 in Ref. [ 16 ] one
can easily verify the the following compactness
criteria in C, =C([ —p, 0], [*) by means of uni-
form tail estimates.

Lemma 4.2 Let {u"},2) ={(u!)icz 1 &
C,. Then {u"},~ is relative compact in C, if and
only if the following conditions are satisfied:

(1) {u"},~1is bounded in C,;

(D {u’

(iii) hmsup limsup sup Z
(e  FTE

Theorem 4. 3  Assume that (H), (7) and

(26) hold. Then, the non-autonomous dynamical

" Vuz11s equicontinuous;

|2 =,

system @ has a unique D,-pullback attractor A, =
{A,(0):t€R} €X,.

Proof For r€R, denote by
Ko ={(u, weX,:(lul;+lvl*)<
Mo},
where

zwu>:23&wf{pkufu+w>nﬁs+
2 8a [ o gt | ds.

X8 —oo

Firstly, we know from Lemma 3. 1 that ®
has a D,-pullback absorbing set K (7). Secondly,
since Lemma 3. 1, 3. 2 and 4. 1 coincide with all
the conditions of Lemma 4. 2, ® is D,-pullback
asymptotically compact in X,. Hence the exist-
ence of a unique D,-pullback attractor for the non-
autonomous dynamical system & follows from

Proposition 2. 7 in Ref. [ 18] immediately.
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