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Crossing limit cycles of a 3D piecewise-smooth system

ZHENG Ying-Ying , CHEN Xing-Wu
(School of Mathematics, Sichuan University, Chengdu 610064, China)

Abstract: In this paper we investigate the crossing limit cycles of a 3D discontinuous piecewise-smooth

system. In this system, the phase space is divided into two regions by a hypersurface and thus the sys-

tem presents two different vector fields. Meanwhile, the system presents two-fold in which both vector

fields are tangent to the hypersurface. We prove that the maximum number of crossing limit cycles is 2

and give necessary and sufficient conditions for one and two crossing limit cycles respectively. Further-

more, the crossing locations of the crossing limit cycles are determined as well as their periods.
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1 Introduction

In recent years, discontinuous piecewise
smooth ( DPWS) systems have enjoyed wide-
spread application such as mechanical systems
with friction, switched electronic systems, and
control systems'" /. For DPWS systems, bifur-
cations of limit cycle are also an important prob-

lem™ ¥

. In this paper we consider a 3D discontin-
uous piecewise-smooth system defined by ordina-

ry differential equations. Here the vector field is
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discontinuous along a hypersurface in its 3D phase
space and, sometimes, this hypersurface is called
a switching manifold. For 3D discontinuous
piecewise-smooth systems, an important and in-
teresting type of singularity is two- fold singulari-
ty, which is a point on the switching manifold and
at which the vector fields on both sides are tan-
gent with the switching manifold. Actually, as
indicated in Refs. [ 5-7] each sub-vector field on
different sides has a set of tangential singularities

on the switching manifold and this set is a curve,

R (1997), Lo, BRN, WA, BB T M S35 24, Email: scucollegezyy@163. com
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which is also called tangency curve. So, a two-
fold is actually an intersection point of two tan-
gency curves of sub-vector fields. Additionally,
under some non-degenerate conditions, this two-
fold is said to be regular, otherwise, we say this
two-fold is degenerate.

The dynamical behavior was analyzed near a
regular two-fold for a 3D discontinuous piecewise-
smooth system in Refs. [8-10] by using Filippov’s

U Considering the degeneracy of

convention
two-fold, Q2-singularity had been presented in
Ref. [12]. Further, by the tangency degree of
those two tangency curves, the classification of
degenerate two-fold was given in Ref. [5] as 1-de-
generate two-fold (Q2-singularity) and 2-degen-
erate two-fold, the normal form for systems hav-
ing degenerate two-fold was also provided, which
shows that under perturbations a 1-degenerate
two-fold may disappear or split into two regular
two-folds and of course some interesting sliding
bifurcations happen. A truncation of generic un-
folding of a normal form having a 1-degenerate

two-fold was reduced as

C
Fr(X)= 1 s if 2>0,
j —y+at —p
C
F (X)) = —1 , if 2<0
*y*x2+/l
(D)

in Ref. [13], where X =(x, v, 2)7, /s ¢2s p €
R. It was proved in Ref. [ 13] that system (1) has
a family of non-isolated crossing periodic orbits
when ¢; + ¢, =0. Fixing ¢ = —¢;, = —1/4 and
adding terms ax, az in F(X) in (1), it was ob-

tained in Ref. [ 7] that

—1/4 —ax
Fr(X)= 1 ., if 2>0,
S —y+ta' —az—p
1/4
F (X)= —1 , if 2<<0
—y—a’tu
(2)

where a,p €R and a #0. The existence and num-

ber of crossing limit cycles (CLCs for abbrevia-
tion) for system (2) were investigated in Ref.
[7]. Although some terms are added in (2), ¢
and ¢, are restricted as —1/4 and 1/4 respective-
ly. We wonder whether there are still CL.Cs with-
out this restriction, i. e, general ¢, c; satisfying
¢y e, =0.

In this paper, we study the existence and

number of CLCs for system

c—ax
FrxX)= 1 , if 2>0,
S —y+ta’ —az—p
—c
F (X)) = —1 , if 2<<0
—y—x’ tu
&))

where ¢,a,p € €R and a #0. The switching man-
ifold of system (3) is 3= {X€ R*:h(X) =0},
where h(X):=z, and the two tangency curves are

T'=(XeSy—a" +tu=0},

T =(X €Siy+a® —p=0),
respectively. It is not hard to check that system
(3) has no two-folds when << 0, one 1-degener-
ate invisible-invisible two-fold O:(0,0,0) when g

=0, and two regular invisible-invisible two-folds

P* . (£ ,0,0), when 0 < ;2 <<1. Moreover. the
crossing regions and sliding regions are

S={X € Xy < min{a® —p, — 2 Fub)s

So={X €y >maxia’ —p, —2" tpults,

=X eSSt —p<y<—a tul,

S=XeS 2 bp<y<at—pl.

We show the crossing and sliding regions when
#<<0, £=0, and ;>0 respectively in Fig. 1.

We get the results about CL.Cs of system (3)
in the following theorem.

Theorem 1.1 For system (3), the maximum
number of CLLCs is 2 and it is reachable. Moreo-
ver, there exists CLCs if and only if there exists
7€ Qeo={r>0:g (¢) >0, g, () <0} such that
() has zeros. Each zero r corresponds to one

CLC with period 2 ¢ and crossing 3 at two points

Po:(i”oa 5/07 0, P1: (X1, 31190), COl’lSideI‘ing €
(0, +2),

041004-2



% A4 HAEE, ¥ — R RSB A% T AR % 59 %
] —tlat2®) | 25 Qe™ +1) and
g ()= %0 -+ 3(1—e)
. ( ):=7lir(a*2c‘2) 2t (e +1)
82T a a(l—e") (1—e")?
s , 4)

( )::a(S +c*ar®) +6¢° .
gD T 6a2

tlat2) U +e")

da(l—e=)

3+ —c(Gar—De” +1D
0" a(l—e") ’

R ::( —2car? +(6¢F —9a)t+6)e* —4(2c%ar? —3ar+3)e™ —2ctar? —(6¢% +3a)r+6

12a (1 —e“)? ’

(5)

r | Ly

p

D | D
I :

+ o

o\ >e !
X X

(a) p<<0 (b) =0 (c) >0
Fig. 1 The crossing regions and sliding regions on the switching manifold 2= 0

In Theorem 1. 1, results about the existence
and number of CLCs as well as their birth given in
Ref. [ 7] are generalized from the case ¢; = —¢;, =
—1/4 to the case ¢; +¢, =0.

This paper is organized as following. In Sec-
tion 2, we introduce some basic definitions of DP-
WS systems. In Section 3, we provide a proof for
Theorem 1. 1. In Section 4, we present some re-

marks and give examples to show the existence of
CLCs.

2 Preliminaries

In this section, we introduce some basic defi-

nitions about DPWS systems. For a 3D
DPWS system

. JW (X) ’ lf X 6 ZJr ’

X =F(X) = (6)

)_
IF 0. ifxes

the switching manifold is 3= {X € R*. h(X) =
0} , which separates the phase space into two re-
gions 3. :={(X € R*; h(X) >0}and> ={X €
R*: h(X) <0}. Here F"'=(fi, f5, fi ). Asin
Ref. [ 7], the Lie derivatives Lp= h:=(Vh, F*)
denote the contact type of vector field F* withX ,
where Vh # 0 is the gradient of A (X) and
(. , . denotes the canonical inner product. Sim-
ilarly, higher order Lie derivatives are given as
L+ h:=(VLi='h, F*)for n=2. Using the Lic
derivatives, we state the sliding regions and the

crossing regions on switching manifold as follows

Si={X eSS, Lirh >0, Li-h >0},
S ={Xe3.Leh <0, Le h <0},
Si={X €3, Lith <0, Ls=h >0},

Si={(X €3; Lyth >0, L&h <0},
For X € 3¢ U 3!, by Filippov’s convention"'" we

041004-3
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obtain the sliding vector field F* as

T ‘_LF ]’LP‘Jr *LF* hFi
F(X)= L. h Lo h

which is tangent to the 3. Moreover
F(X)=Lr hF" —LgthF ) (X)),

is called the desingularized planar sliding vector

(XD,

field of F*. Clearly, (Lyh —Lgt h) (X) >0 (re-
sp. << 0) when X € 3¢ (resp. X € 37 ). Thus,
we usually consider F*(X) for X € 3¢ U 30, As
in Ref. [ 5], the tangency curves of vector fields
Frare T ={X € 3:.L=h(X) =0} , respectively.

Definition 2. 1 A point p € T* is called a
fold of F* if L} h(p) #0. Moreover, a fold p €
T" (resp. T ) is visible if L3 h(p) > 0 (resp.
Li h(p)<<0) and invisible if L&+ h(p)<C 0(resp.
Lt h(p)=>0).

When a point p is a fold for both F* and F,
the point is called two-fold. Generically, T" and
T~ are transverse at this point, and more precise-
ly classification is shown as follows.

Definition 2, 2"/ A point p€ T NT  is
called a regular two-fold (resp. 1-degenerate two-
fold) if the contact between T and T at p is
transverse and p is a hyperbolic critical point (re-
sp. quadratic and Li+ h(p) #LE h(p)) and the
eigenvectors of the Jacobian matrix of F* at p are
transverse to T and T .

Let ¢ (¢, po) be the solution of system (6)
satisfying the initial condition ¢ (0, po) = po. As
indicated in Ref. [ 5], by the implicit function the-
orem, for each p, in a neighborhood U(p) of in-
visible-invisible two-fold p. there exists a unique
positive time ¢(p,) such that ¢(z, py) return to 3
at point ¢(z(py) s po). Note that o(£(pe) s po) =
o (t(py)spo) (resp. =@ (t(py),spo)) il po € 3
(resp. € 3. ), where goi are the solutions for
X=F*(X), respectively.,

Definition 2.3 The half-return map for F"
is defined as ®" : p, — g0+ (tospo) € 3. for p, €
>, The half-return map for F~ is defined as &
pr—>¢ (.p) € 3 for py € 3. The first re-
turn map @: 37 — 3/ is defined by the composition
D P,

3 Proof of the main result

In this section, we give a detailed proof of Theo-
rem 1. 1,

Lemma 3.1 The return map ® of system
(3) has a fixed point py: (xos 3o» 0) in 3 and
to =1, =t>0, where x,, y, are given by (5) and ¢
is the zero of ¢. Here ¢ is defined in (4).

Proof We solve the differential equation

X=F"(X) directly and get the solution when
>0 with initial condition (xy, vy, 0) € 3, that
is
= _ (ax, *cj +ce” ,
ae
V() =y i
(EHad—a)e® —a(2dt+1)e” —

+
2 () = ; =+
a.ﬂ eZa/

2cxy (1 Jr?(ii*l)e‘”) X
a‘e
(1 —e") ((yy e —xb)

a eZul .

The return time ¢, >0 satisfies 27 (#,)/(e % —1) =
0, then (2™ (1) s y" (1) s 2™ (t)) = (215 y150)
€ 3. . The same to the vector field F~, the cor-
responding solution with initial condition (x,y; .
0)e > is

x (1) =x —ct,

y () =y —t,

e ()= =50 4 (14200 —

(yl +I% 7/,{)[.

Fig. 2 The trajectories and return map for system (3)
The return time ¢, >0 satisfies 2~ (¢,)/t; =0,
then (2~ (1)), y~ (1) 2 (1)) =(a3,3,,0) € 3.
We obtain the return map ®@: (2o, y0,0)—=>(as,ys
0), whose fixed point may represent a closed or-

bit. We solve these equations (g, v,) =(x5,y5)

041004-4
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2 () /(e % —1)=0, = (t;)/t; =0. From y, =
v, we get t, =t;, and define z=¢, =¢, as an aux-
iliary parameter. By substituting it into the re-
maining equations, we obtain the expressi ons (5)
and ¢ satisfies ¢(z) = 0, and the period of closed
orbit is ¢, +1, =2r.

A fixed point represents a CLC which is in
crossing region, therefore Lie derivatives need to
satisfy these conditions: Lpt h(xp.3,.0) (¢) >0
and Lg= h (&1 ,%,,0)(¢) <O, namely

L= h(xos yo»s 0) () =g1 () >0,

Lt h(xy, y15 0) (1) =g, () <0,

1 (a—2c%)7 e

Lt h(&xos yos O)(T):*ZjL a(e—1) +
d—en?
141:7}1(‘%1, 5}11 O)(T) =
2 2.2 ar
_tlat2) Pt (2+e )<O %6,

2a 3(1—e”
here g, (¢),g2(z) are defined in (4). Because
Ly h(x:3,00 <—Lg h(xe,3,0),
fixed point only needs to satisfy first three condi-
tions. For writing conveniently, we write the
third formula in (7) as g3 (¢). Considering func-
tion ¢(z), we obtain the derivative

G0 _dr (@ t2) (e D),
Jt 3 da(l—e")

tlat2c)e . de(o)
2(1—ey? * Im—5~ =0

—0

Lemma 3.2 For a>2¢*, there exists a con-
stant 7, such that ¢(z) decreases for 0 <z <z,
and increases for r>z,,. For a<<2¢?, the function
¢(7) increases.

Proof By the definition of ¢, we get

lim, .o+ o(z) = —

and
do(r) _ e (2¢* +3a+2" (e +ev)) |
dr 6 (e —1)%
(1) —f2()),
where

o=z, fy(r)i=

3(e” —e “)(a+2)
2a(2¢% +3a+2c2 (e @ +e7))’

Consider the case a >2¢* firstly, Since 2¢* +
3a+2c* (em +e)>0 for £ € (0, +=), the zeros
of dp(z)/dr are given by the intersection of func-
tions f1. fs. Clearly,
3(a+2c*)

4ac®
The derivatives of f;(z) about 7 are

e _ 302 +3a) (e +e") +8H) (a+2cP)
2T 2023 +3a+23 (e = +e%))? ’

11£I1f2 (o) =

~3ala+2®) (e —e ) (=25 (2¢2 +3a) (e +e) +12ac?® +9a* —28¢")

f1(o) =

which implies that f,"(0) =1, f2”(0)=0. Moreo-
ver, f> () >0 for the case a >2¢*, and then,
f>(7) is increasing. We find that f,”(¢) has a u-
nique zero, denoted by 7. It is not hard to check
that /5" (£)>0 (resp. [ (£)<<0) for 0 <<r<<¢{
(resp. r>>71 ). Thus f,(¢) and f,(¢) have a u-
nique intersection, denoted by z,,. Then dgp(z)/d
7 has a unique zero r,, and dg(7)/dr<<0(resp. >
0) for 0<<r<<r,, (resp. r>>7,). Thatis, ¢(z) has
a minimum at t,,.

Consider the case a <2¢* secondly. We also
find that when a™>—2¢%, 2¢* +3a +2c% (e +ev) >
0 for € (0, +°), the zeros of dp(z)/Ir are giv-

2(2¢% +3a+2c%(e ™ +ev))? ’

en by the intersection of functions f1, f,. When
a€[ —2¢%/3, 2¢* ], we get that f5'(£)>0 and f>”
(£)<<0, which implies that f} (z) and f;(z) have
no intersections. Therefore function ¢(7) is in-
creasing. When a € ( —2¢%, —2¢%/3), we obtain
that f,"(z) has a unique zero, denoted by 75 and
12" (©)=>0 (resp. f>' (£)<<0) for 0<<z<_7; (resp.
w75 ). On the other hand, f,”(z) has a unique
zero, denoted by 73 , and f,”(£)<<0 (resp. f,"(z)
>0) for 0<<¢r<<t3 (resp. r=>7r5 ). Thus f1 () —
/2(2) >0 for > 0, which implies that dp(z)/dr>
0. That is, function ¢(z) is increasing. When a =

—2¢*, we compute that dg(7)/dc =c"¢/3>0.

041004-5
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Thus function ¢(7) is increasing for a € [ —2¢,
—2¢%/3). Whena € ( —co, —2¢), we get o (£)>
0 and find that the denominator of f,” has a u-
nique zero, denoted by 7., and it is also the u-
nique zero of the denominator of about f,”. Fur-
ther, "> 0 for 0<<t<{r. and f,"<< 0 for r>7. ,
and f5 () >0 (resp. f>(£)<<0) for 0<<r<{r, (re-
sp. t>>7. ). Then f;>f) for c<<z., fo<<f) for c>
7. f1 and f, do not have intersections. On the
other hand, . is the unique zero of 2¢? +3a +2¢*
(e™ +e), and 2¢* +3a +2¢* (™ +ev) <0( >
0) for 0 <<r<{z, (resp. r>7,) when a<<—2c%.
Thus dp(7)/dz>0, then ¢(¢) is increasing for
a€ (—oo, —2c%).

¢(7) is increasing for a <<2¢”.

Finally we get that function

On the other hand, since lim.. .. ¢ () =
+oo, function ¢(z) +x has a unique zero, called
7o and r, <tr,. After we prove the monotonicity
of function ¢ (), we analyze the number of
CLCs, which is equivalent to the number of zeros
of ¢(z). In the following, we give a proof of The-
orem 1. 1.

Proof of Theorem 1. 1

g5(7), we rewrite g;(¢) as

By the definition of

2
T cT
+

(1—e =) —e*ur)zhl (),

1
g;(0) = s +
where

hy (o= (1+e ) +@

Then, for r€ (0, +°) we have

I 0"
1 T
I ——+ ———=
r?hl(r)>o7 ( a (1—e ))>O.
(7'[ (72'

We obtain that function g; (v)>0. Therefore, in
order to make sure that the fixed points lie in the
crossing region, we only require that ¢ € Q.o »
where (..., is defined in the statement of this the-
orem. Further, by Lemma 3. 1 the necessary and
sufficient condition given in this theorem is ob-
tained for the existence of CLCs.

In the following, we prove that the maxi-
mum number of CLCs of system (3) is 2 and it is

reachable. For a<<2¢”, ¢(¢) is an increasing func-

tion. Thus ¢(z) has at most one zero, i. e. ,sys-
tem (3) has at most one CLC in this case.

For a > 2¢*, ¢ () has at most two zeros,
which implies that there exists at most two
CLCs. By the proof of Lemma 3. 2, we get ¢, =
f2(zy). Associating with expressions of g, g
and f,, we obtain

7o (a+22)(Ba— +cfe @m

&1 (z) " 2a(2F F3a 128 (e @u tea)) -0
_ 1 —¢“n
8 () T4 (2w 127 €% +3aeTn +23)
H(z,) <0,
where

H(z,) =16ac' e +
3¢ (4c* +4ac® +9a*) e*w +
6a(4c' +4ac* +3a*)en —
12¢° +20ac* +21a*c*.
Therefore, 7, € Qa .
On the other hand, by the expression of ¢(7)
given in(4)we get that ¢(z,,) = —e when
_a(3+cfazry) +6¢°

” 6a” *
T (a JFZCZ ) (1 +earw ) +
46{(1 — ey ) €.

Since ¢(z,,) is the minimum of ¢, we obtain that
¢(r)= 0 has two solutions 7, 7 in a small neigh-
borhood of 7,, when 0<¢ <<1. Because of the con-
tinuity, we get g, () >0,g,(7) >0 and g, () <
0,g; () <<0. Thus, there exists two CLCs. That

is, the maximum number 2 of CLCs is reachable.

4 Remarks and examples

In this section, we provide some remarks to
understand more details about the birth and dis-
appearance of CLCs. By the expressions of

g1(0) g2 () and ¢(7) , it is not hard to check that

lim g, (¢) :%(3 —*0),
a—>0

lim g, () :%(czr*?)) ,

a—>0

lim g, (2) =53 +2¢D),

limi g (o) =c(r—1),

a—>—ox

lim g () =£ G40,

a—>-+c

041004-6
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uEE}—, gz(l') =0,

lim (o) +/l:1l2(2€21-*3) )

a—>—+oco
ndeo 1, 1
al}‘lgflx? a‘[ 3 €T 4 ’

which implies that
(1) zeros of g1 (2)s¢(z) +ps dp() /I tend to
3/(4c%),3/(2c%),3/(4c*) respectively as a—> + oo
(i1) zeros of g; () tend to 1/¢% as a—> —oo;
(i) zeros of g, (v),g: () tend to 3/c*as a—>0.
This is consistent with the properties of these
functions in our example in the end of this paper.
Another thing, by the expressions of x .3,
x1.y given in (5), we have

111’1}(.}09 5/07 .%19 5/17 SD(T))Z

—0

(0, 0, 0y 05 —p0).

When =0, we get ¢ (07) =0. On the other
hand, by the definition of ¢(z), we have

lim 282 g, [im 29D Loy,

ot IdT ot IT 12
Thus, for the case that a <<2¢% (resp. a >2¢%),
function ¢(z) has a unique positive zero in a small
neighborhood of 0 when 0<<x <1 (resp. —1<p<<
0) and this zero tends to 0 as p—>0. Moreover,
according to expressions of g, (¢), g, (r) given in

(4), we have

- _ - dgi (o 1
Tli?lgl(r) =0, il)(r)n P R

. o . ﬂgz(r) _ _i
hn}gg(r) =0, hmiar >

0 —0

This implies that this zero is in Q.. for \g\ <.
Therefore,by Theorem 1. 1 there exists a unique
CLC corresponding to this zero and this CLC
births from a 1-degenerate two-fold when ; chan-
ges from 0 to a positive (resp. negative) number.

To end this paper, we take some values for ¢
and p in system (3) as examples. When ¢ = 1/3
and p= —0. 1, we get Fig. 3, where

I ={(a, o): g (r) =0},

Iy ={(a, ):g: () =0},

[y ={(a,0) :p(x) =0}.
Here, the curve Iy (resp. I';) has a horizontal as-
ymptotic line a= 27/4 (resp. a=9) as a—> + oo

(resp. a—> —<°). The curves I'; and Iy intersect

at point (a,z) =(0,27). This is consistent with
the analysis in the first paragraph of this section.

For a fixed a, set (..., is the segment below
curves '} and I'; and above line  =0. From Fig.
3, we obtain that there exists no CLCs, one
CLC, two CLLCs when a € ( —2,0. 31), a € {0.
31} UL0. 34, +2), a€ (0. 31,0. 34) respectively.

a~0.34 —_—

T T T T T T
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
4

Fig. 3 Domain Q.o and zeros of ¢(z) in (a,7) plane of
system (3) when ¢=1/3, x=-0.1

357

307

T=27
25

08 06 04 02 " o2 04 06 08 10

Fig. 4 Domain Q.. and zeros of ¢(z) in (a,7)plane of
system (3) when c=1/3, x=0.1

35\'
30

-6 8 -0‘,6 -0‘,4 -d 2 l 0 0‘2 0}4 016 0}8 1 (I)
o

Fig. 5 Domain (.., and zeros of ¢(z) in (a,7) plane of
system (3) when ¢=1/3, u=4

041004-7



% 59 A Wl K

FRCH A F RO

%A

To observe more cases, we take ¢ = 1/3 and
p= 0.1, p= 4,
ly and get Figs. 4,5 and 6. One can obtain that
there exists no CL.Cs, one CLC when a € [0. 27,
+o0), a€ (—0,0.27) in the case that (¢, p) =
(1/3,0. 1). There exists no CLCs, one CLC
when a € (—co,—0.11] U [0.02,+0), a € (—
0.11,0.02) in the case that (¢, p) = (1/3,4).
There exists no CLCs in the case that (¢, p) =
(1/3,7.5).

#= 7.5 1n system (3) respective-

-0.8 -0.6 -0.4 -0.2 8 0.2 0.4 0.6 0.8 1.0

Fig. 6 Domain Q.. and zeros of ¢(z) in (a,7)plane of
system (3) when ¢=1/3,,=7.5
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