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A high-accuracy linear conservative difference scheme for the
initial-boundary value problem of Rosenau-KdV equation
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Abstract; In this paper, a three-level linear finite difference scheme with theoretical accuracy of O(z* +
h') is proposed for the initial-boundary value problem of Rosenau-KdV equation. This scheme simulates
two conservative properties very well. The existence, uniqueness of the difference solution and prior es-
timates are obtained. Then the convergence and stability of the scheme are analyzed by using the energy
method. Numerical examples verify the theoretical results.
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1 Introduction

In the study of the dynamics of compact dis-
crete systems, wave-wave and wave-wall interac-
tions cannot be described by the well known KdV

equation, To overcome this shortcoming of KdV e-
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quation, Rosenau proposed the following Rosenau e-
quation-**

U, Tl pee T, Fuw, =0 (D
The existence and uniqueness of solution of (1)
were proved by Park™, As the further considera-
tion of nonlinear wave, Zuo'"! added a viscous term

U, to (1) and discussed the Rosenau-KdV equa-
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tion scheme can simulate the conservative law of initial

w, Yt T, tun, tu, =0, xE€R, 1>0
(2)
Accordingly, the solitary wave solution and peri-
odic solution of Rosenau-KdV of (2) are also in-
vestigated. As a more general case, Esfahani’®,
Razborova and coworkers'® discussed the solitary
solution of the generalized Rosenau-KdV equation
with usual power nonlinearity!”’. Moreover, the
two invariants quantities of the Rosenau-KDV e-
quation are also presented. In this paper, we con-
sider the follwing initial-boundary value problem
of the Rosenau-KdV equation
Uy Ttlpgeee T tun, o, =0,
x € (xpsar)s t€0,T],
u(x,0) =u,(x), x€[xL.ar >

(3)
u(xp,t) =ul(xg,t) =0,
u, (xpst) =u, (xg,t) =0,
U (xpst) =u,, (xrst) =0, t€[0,T]
As the solitary wave solution of (2) ist™
(35,35 gy
ulx,t) 7( 24+312«/ 313 )5ech
1/- (L1
op/ 26523 (e (5 /308 ) |

(3) is as the same as Cauchy problem of (2) when

—x, >0,x5 >0. It is easy to verified that (3) sat-

isfies the following conservative lawst ¢ %

QD) :j‘lkuu,z)dx :f“uou)dx — Q)
)
E@W=llul, + lu, I3 =EQ (5)

where Q(0) and E(0) are constants depend only
on initial data.

It is difficult to obtain the analytic solution of
a Rosenau-KDV equation, thus many studies con-
sider the numerical methods. Since the Rosenau-
KDV equation is a conservative physical system,
numerical schemes with conservation properties
are particularly necessary. As Li and Vu-Quoc-"”
pointed, in some areas, the ability to preserve
some invariant properties of the original differen-
tial equation is a criterion to judge the success of a
numerical simulation. Similarly, Zhang and co-

[10]

workers show thata conservative difference

problem well and avoid the nonlinear blow-up.
Hu and coworkers™® proposed a three-level linear
conservative difference scheme for (3) with theo-
retical accuracy is O (¢? + h*). Wongsaijai and
Poochinapan''" proposed a three-level average fi-
nite difference scheme by coupling the Rosenau-
KdV and the Rosenau-RLW equations. A three-
level average implicit finite difference scheme is
proposed by Mohebbi and Faraz''*' and stability
and convergence of O(z? +h*) are proved. Using
cubic B-spline functions, Ucar and coworkers-"*
discussed a Galerkin finite element method. Based
on subdomain method, Karakoc and AkMY use
sextic B-spline functions to simulate the motion of
single solitary wave and derive the numerical so-
lution of the Rosenau-KdV equation. Meanwhile,
the invariants of motion verify the conservation
properties. Kutluay and coworkers'™ studied the
operator time-splitting techniques combined with
quantic B-spline collocation method for the gener-
alized Rosenau-KdV equation in which conserva-
tive properties of the discrete mass and energy are
considered.

On the other hand, most second order accu-
racy schemes are not satisfactory in practical com-
putations, in particular due to the large time
scale. Hence, in this paper, by using the Rich-

ardson extrapolation technique!'™

, We propose a
three-level linear difference scheme with theoretic
accuracy of O(z* +h") and without refined mesh.
Furthermore, the proposed scheme can simulate
the two conservative laws (4) and (5) well.
Mean while, some numerical analysis such as the
prior estimate, the existence and uniqueness of
the difference solution, the convergence and sta-
bility of the scheme are studied.

The rest of this paper is organized as fol-
lows. The conservative difference scheme is pro-
posed in Section 2. The existence and uniqueness
of numerical solutions are proved in Section 3.
Section 4 is devoted to the prior estimate, conver-
gence and stability of the difference scheme. In-

Section 5, we verify our theoretical analysis by

021005-2
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numerical examples.

2 The difference scheme

Let & and ¢ be the uniform step size in the

spatial and temporal directions, respectively. De-

note h:xRJiILaI]‘ =L +]ha] =—2,—1,0,...,
JoJ+1.0+251, :m,n:o,1,2,...,N,N:[7T].

In this paper, C is a positive constant which has

different value in difference place. Let u’ =
u(xj,t,) be the value of u(x,1) at (x;,1,); and

Ui ~u(xj,t,) be the approximation of u(x,t) at

(‘1152‘11)? eni n Un
Define
2 { :(Uj) | U.,=U 1:UO:U]:
UJ+1 :Uj+2 :Oa ]: _23 _190917---7]7
J+1.]+2)
and
., 7U] L 7Un ., Un — n
WUy, ===, (U, =
iy, i —Uj iy, Ui —Ul,
(Ui o s (UD: 1h )
n+1 n—1 u+l+ n—1
Uy, =9 YL ey U AU
2t 2
<U71 V71> 7}12U” ]1’ ” Un HZ — Uu L]71>7
J—1
U .. = max ‘U}’ .
I<j<J—

Consider the followmg difference scheme for (3):

U5 +%(U;~’>mz **<U">wf -

4 r Tn 1 [ Tn [ Tn
a0 (U] ): 7? (U] )z +? (U, Dazs —

%(U',)m %[Uy U + WU ] —

1 [U” (U + WU, ]=0,
]:1929...9]71,7’1:1,27...91\[71 (6)
U? ZU()(Ij)a j:091729...9_] (7)
WU 2 U)o =y )+

4

99“;)(@)* M () e T8 ()

X

T, (; ) (1 ).j=1,2,...,J—1 €))
U e (U” )2 =U)s =0, (Us),. =
(U_”) 0,n=0,1,2,...., N (9

The discrete boundary condition (9) is reasonable
from the homogeneous boundary condition in

(3). Define the following two bilinear functions:

(U3 U = [Uy (U + W35 1

£ U :§[U;-' WU + WU .

Lemma 2. 1" For any discrete functions

U.V€Z), we have
(U, V) =—U, V), (U V) =—U,,V,).
Therefore,
U, IP=11U: 1%, Uy U=
—U,,U)=—1U, I’ a0
Moreover, if (Uy).-— (U;),+ =0 then

U,z Uy =11U,, I

Lemma 2.2 If Ue 2z,
Cauchy-Schwarz inequality and summation by
parts'®, we have |U; I'<<|U; < |U, |°.

The following theorem shows how the differ-

then from

ence scheme (6)~(9) simulates the conservative
law numerically.
Theorem 2. 3 The difference scheme (6) ~

(9) is conservative for discrete energy, that is

h

Q= 2 o +un+2 Z UU; ™ —

9°

182_ 2 (UHUH-H ) — an] e hee — Q()

(1D
SCIU 242 U |2 =
2 nt1 2 n 2 n 2 __
3 1ozt 12+ 1o+ H Uz |
2 n n—1 — — 0
— U5 |5 =E" ! =--=E 12
Proof Multiplying 2 on both sides of (6)

and taking summation of j, we obtain from (9)

and Lemma 2. 1 that

J1 nt-1 n—1 o
p>) U UL +—h EU;-' Wp: —
=1 2t =1
J—1
%h Sur W —o (13)
j=1

On the other hand,
J—1

J—1
h Z U;: (U}:); — 71 (Un-H) +

j=1

h
2

h
2 5
—1 J—1
U Uy -

1 7:1

[
~.

Uvr‘rl )

.
Il
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h A 1 . é( U= 2 — U=t |12) —
? ; U] (U] 2 61’ ar ax
ST R Lanus iz — st 15 =o (15)
h 23U UM: =5 23U U + 3¢
' hl ]7; 71 By the definition of E”, we obtain (12) by dedu-
2 U (Ui s ?l 2 Uy Wyt — cing (15) about n.
= j=1
h 2 U (U- 3 Solvability of the difference scheme
2 <

Substitutmg them into (13), we obtain (11) by
deducing.

Then, by taking the inner product of (6) with
20", it follows from (9) and Lemma 2. 1 that

; y 2
10" 13+ U 13— 1U% 13+

S0 0 =2 WU 4303 U —
(U U 420U U U,y —
206U U, U,) =0
Note that
(U2, U" =0, (U5 U") =0,
(U2 0" =0, (O, 0" =0,
(GU U0 =

14

J—1
%h 2 [Ur (U + WUUH: 10y =

J—1

%h ZU;’U}’ Uy; +

gh Z UUH,U =

4 / 1

oh DT WU WU —
=1

R

oh 2 UU; U =0
=1

and

<S(U“ 9U”) sU”> =

J—1
Sk 2 (U U + U= 10; =
=1

J-1 J—1
Sh U U +h 2 GO,
j=1 j=1

J—1

%h DUy Uy —
=1

1

J—1
oh 2 UU; U =0
j=1

So one can obtain by taking them into (14) that

S CIT 2= U 1) +
T

Theorem 3. 1 The difference scheme (6) ~
(9) is uniquely solvable,

Proof We will use the mathematical induc-
tion to prove the result. It is easy to see that U°
and U' are determined uniquely by (7) and (8),
respectively. Let U°,U', -, U ',U" (n<N —1)
be the unique solution of difference scheme (6)~
(9). Now we consider U""'in (6). We have

i n+1 __ _i n+1 o
+ 6T(Uj )z s 3; (U™ )z +

W5 s = U s+ ) —

1
( u}l+ )J‘f}' +

= ool

SULUT

%S(U;’ U =0 (16)

Taking the inner product of (16) with U™, i
follows from the boundary condition (9) and
Lemma 2. 1 that

oo U 1 U 12— U )2+
6‘[ 3T
%<U";»+] 9U"+1> é <Un+1 Ul y 4
%<U’;E U — i (Ut Uty +
1 <¢}(Un Un+1) U11+1> .
LU UT U =0 aan

Noticing that
oz, gty =00, U”“>:
UL, Uty =0,(UE, U ) =
(g, urt)y,urt) =

J—1
Sh U WU +
=1

J—1
%h > UUrhHUrt =
=1

J—1
=1
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I Suppose that the solution of (3) is smooth suffi-
Ly vt ;= o P . .
9 4 ciently. By using the Taylor expansion, we
and know that
<:§(U”,U”H)7U"H> — ‘r}z‘ :O(Z‘2 +h1) @22

J—1
%h DU (Ut +
j=1

J—1
LS worur =
j=1

9
1 J—1
5h Z (U;zUl]z{l)(U}z\l)l _

j=1

J—1
% h > UIUST (U =0
j=1

by substituting above results into (17), we get

b 2
1T 1243 U 12 =2 (U )2 =o.

Then, from Lemma 2. 2, we have
ot E< o™ e,
that is to say,
U 12+ 10" 112 <0.
Thus (16) only admits zero solution and there ex-

its unique U’ satisfies (6)~(9).

4 Convergence and stability of the
difference scheme

In this seetion we study the convergence and
stability of the difference scheme (6)~(9) by u-
sing the discrete functional analysis method. The
truncation error of the difference scheme (6)~(9)
is defined as follows.

_Z

r=(u’); +*(u” wi i g

(U} ) ezzzs +

WU = Ui+ (U 3 —

%(U; )it F gl UTY —ECu UL

j:1929...9J71;77:1927...7]\[71 (18)
u? :uo(l‘j),j:(),l,z,...,_] (19)
u}+£(u})u;;*£(u})”;; =u,(x;) +

9”%) a“°<1> ”“(z)-

T, (; ) (x )+ .= ] —1

(20)

ullezga(ug)A:(ull)A-:()»

(uf) e =(uj).x =0,m=0,1,2,....,N (2D

Lemma 4. 1
ar J. Then the solution of (3) satisfies
lully, <C, llu, I, <Cs lu |, <C,
lulle <C, lu, I, <C
Theorem 4. 2

xx ]. Then the solution to difference scheme (6) ~

Suppose that u, € H: [ x.»

Suppose that u, € H; [ x.,

(9) satisfies
10" | <C, U | <C, U7, || <C,
1o .. <C, llul Il .<Csn=1,2,...,N.
Proof From lLLemma 2.2 we have
10 121U 12, TUE 1P <
It follows from Theorem 2. 3 that

(oS

ST 2 U 12+ U )2+
IUs |19 <E"—E" ~C,
U =C, U | =

(10) and Cauchy-Schwarz inequality, one obtains
(U 121U || « 1U% I <

that is, Then, from

L+ o 1,

which yields || U2 | <<C. Therefore, from dis-

crete Sobolev inequality '™, we get || U" | .. <C,
U .. <C.

Theorem 4. 3

(3) is smooth sufficiently and u, € H;[ x> xx .

Suppose that the solution of

Then the solution {U"} converges to the solution
of (3) with convergent rate O(z*> +h') in the
[

Proof Subtracting (6) ~(9) from (18) ~
(21), we get

sense of norm |

=€)z +*(e” e —%(e}’).fﬁn +
4 —n 1 on 3 on
g(ej);~—§(ej):;+§(e,)ﬁ;-—
(@) i g U —gUsUY)
ECul, UMY +&UT,UY)
]_1 2 9]7 _1729--.9]\771 (23)
¢ =01j=0.1:2400s] —1 24)

2

1 —_0
3 (€j )z =705

e]l' +§ (e]l )J:I‘E o
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j:1 240 —1 (25) _ 7
Ly Z [ut (U1 —Ur (U Jer —
€Ly, (eh):=(e]):;=0,(ep) .z = 9
(e])ff =0 9 n:(),lyz’...’N (26) %h E (qu}l 7U7U,;>(E}1)l _
Taking the inner product on both sides of (24) =1
with e', we obtain from boundary condition (23) %h f et (U +U (&)s Jet —
and Lemma 2. 1 that /]:11
1 . nT Tn nn o
Lo 2 +2 el 12— Jek 12 =< eb. oh 24 (@US +URD @) <
= - =
From Lemma 2. 2, we have CClle 12+ lem 2+ llet 12)<
e 12 et II? 27 CClle™ 2+ lle 12+l |2+
Again, from (22) the Cauchy-Schwarz inequality ler™ 124 llex 11 (32)
and (27), one concludes that and
e |7+ lel [*<<O (¢* +h")* (28) (ry2em) =Gryett Fe < |12+
Taking the inner product on both sides of (23) Fe 12+ e 11* (33)
with 2¢", we get from boundary condition (26) Substituting (30)~(33) into (29), one gets
and Lemma 2. 1 that Lo I3+ lew 13— les 13< 1 17+
1 onN — n 5 7 2 2 n
(7 ,2e")y =l e H%Jrg [ e |2 gﬂef; %+ CClle™ 24 ler 24 et |2+
8 (on ory < PR N Fer™ 2+ e 1% (34)
AR eioe eiri e’ Similarly, we have

(ehzzse") +2<¢(u” U —¢ur,ut,
e") —2(eu" U —6WU", U ey (29)
Similar to (14), we get
(e, e")=0,(e",e") =0,
(elzzse") =0,{el,e") =0 (30)
From Lemma 4. 1, Theorem 4. 2, Lemma 2. 2 and

the Cauchy-Schwarz inequality, we have
(pu" U —¢U"\U") ey =
%hgﬁﬁydnx—Uydﬁh}¥+
4 J—1 _ — _
ot 2 L@UD: = WiUDs Jej =
4 e B - B
5 21 [et (UH; +U? (el); Jet —

4, N
th (e;Uy
CCller I+ Te 17+ led |*)<

CCle™ |24 [le" 12+ (e 12+
[er™ 2+ et %) (3D

<§(u” 7U)I)*5(U“ aU“ ) agn> =

1, o
ol >0 [ul (U
=1

+Uel) (€ <

—U" (U )y Jer +

1

J—1
Sh 2 LU — U307 ey =
=1

- 1 - .
Fer P <5 Clle™ 12+ et 117D,
MWZ—uww+mum,

Lo 12y Clet 124 e %) (35)

As a result, (34) can be rewritten into
5 2

et 134 llew 13 == lex 1317 1%+
3 3
CClle™ 12+ le 17+ et 17+
Pt 12+ et 1) (36)
Let
B = H e71+1 H 2+ H e H Z+§ ” nt1 H 2
S w22 bz 2 2
ool 17— e 17— e
e ir—L e 2L e

Multiplying 27 on both sides of (36) and taking

summation from 1 to n, we get

n

B <B +2c>, A1+

=1
nt1

Ce D) Cle 12+ leé I (37)
=0

From (22), we have

1'2 A2 <

o (2 H+hYHE.

ne max | rle

<n
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On the other hand, it follows from (24) and (28)
that B® = O (% +h')2.
Theorem 4. 2, we have

Fed I <llex I, lew | <

Similar to the proof of

et Il
It follows from inequality (37) that
Te™ 12+ e 12+ lem 12+ e 17 <
wH
B <O@ +hY +G D) (11”7 + 11d, 1P
=0
By the discrete Gronwall inequality™®’,

e | <O* +h'), el | <O* +h").
From (35), we have | e || <O(z*+h'). From
the discrete Sobolev inequality"'”, we get

Ile" || .. <O(z* +h*) and end the proof.

We can prove the following theorem in a sim-
ilar way of Theorem 4. 3.
Theorem 4.4 Under the hypotheses of The-

S Numerical examples

As the difference scheme (6)~(9) is a linear

#F1 it does not need any iteration.

system about u
Obviously, the advantage of this scheme is that it
can greatly save calculation time. Let x; = —70,

IR ZIOO,T:ZLO,and

sech*<24«/ — 2642 mx).

For some different value of r and h, we list errors
at several time in Tab. 1 and verify the accuracy of
the difference scheme in Tab. 2. The numerical
simulation of two conservative quantities (4) and
(5) is listed in Tab. 3. The stability and conver-

gence of the scheme are verified by these numeri-

orem 4.3, {U"} is stable in the sense of
e cal examples. It shows that our proposed scheme
norm * |l e
is effective and reliable.
Tab.1 The error estimates of the numerical solution at different time
=0.4, h=0.2 t=h=0.1 =0. 025, h=0. 05
[ e | et Il o e |l e | e e I e e
t=10 1. 12908e—2 4,52718e—3 6. 98904e—4 2.79441e—4 4,7300e—5 1. 75040e—5
t=20 1. 87579¢e—2 7.08299e—3 1.15263e—3 4.32932e—4 7.19301e—5 2.70500e—5
t=30 2.40018e—2 8. 81077e—3 1. 47057¢—3 5.36978e—4 9.16277e¢—5 3. 34997e—
t=40 2.79798e—2 1.01168e—2 1. 71214e—3 6. 15605e—4 1. 06520e—4 3.83553e—
Tab. 2 The numerical verification of the theoretical accuracy O(z% +h*)
) h h
n (T n n (N T
lerthoo) I/ e (502 ) | Lot e/ e (5 ) I
r=0.4 =0.1 r=0. 025 r=0.4 r=0.1 r=0. 025
h=0.2 h=0.1 h=0.05 h=0.2 h=0.1 h=0.05
t=10 — 16. 1551 15. 9822 — 16. 2008 15. 9644
t=20 — 16. 2740 16. 0243 — 16. 3605 16. 0048
t=30 — 16. 3214 16. 0494 — 16. 4080 16. 0293
t=40 - 16. 3420 16. 0734 - 16. 4340 16. 0500
Tab. 3 The numerical conservative quantities Q" and E”
=0.1, h=0.1 t=0. 025, h=0.05
Q?I EH Q7I Ell

t=10 5. 498 286 66 1. 989 783 48 5.498 179 66 1. 989 782 39

t=20 5.498 286 71 1. 989 783 33 5.498 180 24 1. 989 782 58

t=30 5.498 286 71 1. 989 783 69 5.498 179 74 1. 989 782 22

t=40 5. 498 286 56 1. 989 783 97 5.498 179 23 1. 989 781 86

021005-7
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6 Conclusions

The purpose of this paper is to study the con-
servative difference scheme for the initial-bounda-
ry value problem of Rosenau-KDV equation. By
using the Richardson extrapolation, this scheme
can improve the spatial accuracy to the fourth or-
der. At the same time, due to the three-layer
framework, the scheme does not require any non-
linear iteration, and thus greatly improves the
computational efficiency. Theoretically, the ener-
gy stability, existence and uniqueness of the nu-
merical solution are given, and the convergence
and stability of the numerical scheme are also
proved. Finally, numerical examples also verify

the theoretical analysis of the proposed scheme.
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