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An energy preserving mixed finite element for Maxwell's equations
with nonlinear conductivity
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Abstract: An energy preserving mixed finite element is constructed to solve the Maxwell's equations
with nonlinear conductivity. This finite element is obtained by discretizing the first-order formulation of
Maxwell's equation in space based on the finite element exterior calculus as well as a continuous-time
Galerkin method, which can be viewed as a modification of the Crank-Nicolson method, is used to dis-
cretize the time. Then we obtain a full discrete scheme preserving the total energy exactly when the
source term is vanished. The mixed finite element method can preserve the magnetic Gauss law exactly.
Based on a projection-based quasi-interpolation operator, the optimal order convergence of the method is
established. Finally, numerical examples are presented to exemplify the theoretical results.
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In this paper, we consider the energy preser- and
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satisfying
,E+o(|E|)E—VXB=/in QX (0,T],
JatB +VXE=01in QX (0,T],
lv « E=pin QX (0,T],
V+B=01in QX (0,T] (D

with homogeneous boundary conditions

EXn=0, B+*n=0, on dQx(0,T],
and initial conditions E( ¢« ,0) =E, ( « ) and
B(+ ,0)=B,(+) in Q. Here QCR® is a bounded
domain homomorphism to a ball with Lipschitz
piecewise smooth boundary and n denotes the out-
ward unite norm vector of Q. The unknown E
and B are time dependent functions on the domain
Q, which denote the electric field and the magnet-
ic field respectively. The known functions f and p
denote the conductivity current density and the
charge density respectively. T is a finite positive
real number denoting the final time. The vector
function B, ( * ) satisfying the condition div B, =
0. We assume that  is occupied by a nonlinear
conducting material with electric conductivity
o(|E|) which is supposed to be a monotone func-
tion of the power law form ¢(E) = |E|« ' with
a€(0,1). As proved in Ref. [1], we have

(o(|E\[DE, —o(| E; | )E; . E, —E2) =0,

VE ,E, € (L*(Q))* (2)

Maxwell's equations with a power law form for
the conductivity is used in a variety of physical
models such as the conductive law for type-II su-

(2]

perconductors'*) and modeling of the nonlinear

conductivity of the charge density wave state of
Nbseg :3:.

solution for the Maxwell's equations (1) with a

The existence and uniqueness of weak

power law form for the conductivity (| E|) was
discussed in Ref. [4]. However, since the Max-
well’s equations (1) are coupled nonlinear partial
differential equations, it is usually difficult to ob-
tain their analytical solutions, and the only way
to solve them is to numerically seek some approx-
imation solutions. Fortunately, there are many
works in this research fields [ *%, In Ref. [5],
the authors gave a numerical scheme based on
backward Euler discretization in time and curl-

conforming finite element methods in space to

solve (1). They proved its convergence based on
the boundedness of the second derivative in the
dual space by the Minty-Browder technique. In
Ref. [1], the authors developed a fully discrete
A-¢ finite element method to solve (1) with pow-
er law form of conductivity based on backward
Euler discretization in time and nodal finite ele-
ment methods in space. In Ref. [7], the authors
analyzed a second order numerical scheme for (1)
by using the Nédeléc finite element method. They
treated the nonlinear conductivity explicitly and
obtained an O(At* +h*) error estimate in the L*
norm. Most of the existing works except Ref. [ 7]
deal with (1) by eliminating the magnetic field B,
and then transforming the Maxwell's equation in-
to curl-curl system with unknown electric field E.
This seems difficult to preserve the total energy
and the magnetic Gauss law exactly.

In this paper, we try to develop a natural-to-
tal-energy-preserving and magnetic-Gauss-law-
preserving mixed finite element method for (1).
We discretize the first order formulation of (1)
directly by using the finite element exterior calcu-
lus in space and a continuous time Galerkin meth-
od which can be viewed as a modification of the
Crank-Nicolson method to discrete the time varia-
ble. Comparing with the exiting work'™, our fi-
nite element can exactly preserve the total energy
of the system for both semi- and full-discrete
schemes. Also, our mixed finite element pre-
serves the divergence-free condition of the mag-
netic field B exactly. Such condition is very im-
portant for Maxwell's equations, since it means
there is no magnetic monopole in the world.

The rest of this paper is organized as fol-
lows. In Section 2, we introduce several Sobolev
spaces and give weak formulation of the equation
(1) and obtain the energy inequality. In Section
3, we recall some finite element spaces and give
the semi-discrete scheme of the equation. We
show that the semi-discrete scheme preserves an
energy similar as the continuous one and pre-
serves the divergence-free condition of the mag-

netic field B exactly. We also give the optimal or-
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der error estimates for the semi-discrete scheme.
In Section 4, the full-discrete scheme is given by
employing a continuous times Galerkin method.
We show that the full-discrete scheme preserves
the energy and the divergence-free condition of
the magnetic field exactly, and give the optimal
order error estimates. In Section 5, some numeri-
cal examples are given to verify the theoretical re-

sults. In Section 6 we summarize our findings.

2 Preliminaries

In this section, we introduce several Sobolev
spaces and give the weak formulation of the equa-
tion. For some nonnegative integer m, we denote
by H" (Q) the usual m-th order Sobolev space
with norm || ¢ |, and semi-norm | « |,. In par-
ticular, H® (Q) = L* (Q) denotes the space of
square integrable functions on ), with inner
product ( + , *) and norm | ¢ |I. For the vector
spaces (H" (Q))* and (L*(Q))*, we use the
same notations of norm, semi-norm and inner
product as those for the scalar cases. We also in-
troduce the spaces

H(curD ={ve (L* (Q))?:curlve (L* (Q))°},

H(div) ={ve (L*(Q))*:divve € L*(Q)}
and set

S:==H(Q) ={veH'(Q):v=0 on 9Q},

U:=H,(curl) ={ve H(curl) :v Xn=0 on

Q)
Vi=H,(div) ={v€ H(div):v * n=0 on 9Q} ,
Wi=LE(Q) = {0 € L@ |0 dr = 0).

Q
For any scalar- or vector-valued space X defined
on Q, withnorm || * [ x, we set
L ([0, T], X)={0: [0, T]>X; o] rx) <
oo},

where

._J (Jl | vCesr) H&)W, if 1 <p< oo,

H ‘U” oo = 0
less sup |vCest) | xs if p = oo,
0T
For simplicity, we set
L*(X)=L*(0,T];X).
For any integer =0, the spaces H" (X)=H"([0,
T];X) and C"(X)==C"([0,T];X) can be defined

similarly.

The weak formulation of the equation (1)
reads: for given f€C’((0,T), (L*(Q))*), find
(E,B) €U XV such that

J(E),E,sb)vL(a(\E\ YE, ) —(B,VX¢) =

(fsp V¢eU, (3

I(Q,B,@)Jr(VXE,go):O VoV
with initial condition

EC«,00=E,(+), B(+,00=B,(*) in Q.
Define

A:. (UNHiv)) X(VNH(curD)—

(L* Q) X (L*()?
as

0 —VX

7<V>< 0 )
Denote U=(B,E)" €U XV, V=(¢,p)" €U XV,
g=GUEDE.0O" and F = (f,00". The weak
formulation of (3) can be rewritten as

W,,.V) +AU,V) +(g.,.V) =(F.,V),

YVeUXV (5)
with the initial value

UCs,0)=U,(*)=(E,(+),By(* N7,

Remark 1 Using the fact that VXU CV and
the second equation of (3), we have

dB+VXE=0€V.

Taking divergence on the two sides of the above

4

equation and note the fact V + (VX) =0, we have
d,(V+ B)=0.
Together with the assumption on By, we have
VeB(e+,t)=0foranyt€[0,T].
Now we turn to the energy estimates of the
weak formulation. We first follow Ref. [9] to in-
troduce an inequality.

¥ Suppose that a real number x

Lemma 2. 1
satisfies the quadratic inequality 2* <ax +§ for a,
£=0 and o +f >0. Then x<<a+p.

Theorem 2.2 Let U =(E,B)T be the solu-
tion of the weak formulation (3) or (5). Provided
that f€L' ([0, T], (L*(Q))*), we have the fol-

lowing stability bound:
T

sup [UC,9] +J§J (o(|EDHE.E)ds <
. 0
[0+ 2[ o) lds (6)
0
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Proof Taking V=U in (5), we have
W,C+ ., UC ,9)) +(AU,U) +(g,U) =
(F,U).
Using the fact that A is a skew-symmetric opera-

tor, we have
%%HU( c )|+ GUEDEE) =(F,U).

Integrating the above equation in the interval
(0,2) for any t €(0,T], we have

lUC ) |? +2j<a< |E[YE,E)ds =
0

[0 2 (F (a0 U o ds =

0

SN

U +2 sup UG | [IE G2 L ds.
0

Using Lemma 2. 2 with
-

T = sup U9 er/?(J (o( \E\E,E)ds)% ,

<s<T

= 0
the desired result follows.
Remark 2 From the proof of Theorem 2. 3,
we can see that when the source term f vanished,

we always have

t

U2 +2J(a(| EDE.E)ds = |U,|?
0

for any s €[0,T], which means the energy of the

system are preserved exactly.

3 Semi-discretization

In this section, we recall some finite element
spaces and give the semi-discrete scheme of (1),
We will show that the semi-discrete scheme pre-
serves an energy similar to the continuous one and
preserves the divergencefree condition of the
magnetic field B exactly. We also give the optimal
order error estimates for the semi-discrete
scheme. It should be point out that, in the exist-
ing work'™, the authors ignored the semi-discret-
ization of the nonlinear Maxwell’s equations.

3.1 Finite element spaces

Let T}, be a quasi-uniform shape regular tet-
rahedron triangulation of Q, we have the follow-
ing finite element spaces with respect to the parti-

tion T/l H

S, CS is the Lagrange elements space with

continuous piecewise polynomialst'™ ;

U, CU is the edge element space-!!* 2,

V, CV is the face element space'?';

W, CW is the discontinuous piecewise poly-
nomial spacel®;
We assume that the finite element spaces S, ., U, ,
V, and W, contain all piecewise polynomials of or-
der up to [=0. Choosing proper types of the a-
bove finite element spaces such that the following
diagram

grad curl div
S U \%4 w

v Y Y Y (7
Si grad U, curl Vi div W,

is commute exact sequence in the sense that

ker(curD) =img(grad)
and

ker(div) =img(curl).
There are many finite element spaces satisfying
(7), for example we can sce Ref. [15]. We de-
fine the discrete weak operators V, * :U,—S, and
V. X:V,—U, as the adjoint operators of —Vand V
X, respectively, i. e., define V, u, € S,,
subject to

(Vi ®wyssy) = (s Vsy) s Vs, €S, &
define V, Xwv, €U, , subject to

(Vi Xvpsuy) = (0 s VX)) s Yu, €U, (9
We introduce the projection-based quasi-interpo-
lation operators I : U—U, and I{.V—V, follows
Refs. [16, 17]. These operators will play an im-
portant role in the error analysis and have the fol-
lowing properties.

Lemma 3. 117

interpolation operators I, and I¢ have the follow-

The projection-based quasi-

ing properties: For any u €U and ve€V,
(Liu,Vsy) = (u, Vs s Vs, €Sy
(I{v,VXg,) =(v,VXg)s Y €U,
and
(VXL VX)) = (VX VX GO Y g €U
(VeIiv,Veg)=(Veu,Veg), Vg €V,
For any u €U and ve€V,
VXLl <[V Xull, |V« Lol <[V«

051003-4
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For any u €U NH(div) and v€V NH(curD),
Vi Lu=QV e+ u,V, XIjv=Q,VXuv,
where Q5 : L* (Q)—>S,and @;: (L*(Q))*—=>U, are
L? orthogonal projection operators. Therefore
[V, » Lul <V = ul [ V) X Iio] <[V <.
For any u cUNH"'(Q) and veVNH"'(Q),
lu—TIwu| h |ul,, for 1<r<i+1,
|vo—TI{0 | sk ||o|,,for 1<r<</+1.
Furthermore, if VXu € H™ (Q)and V ¢+ v €
H""'(Q) . we have
IV X (=T | Sh |V Xu
1<r</+1,
|V s =T | =h |V« ol,, for
1<r</+1.

3.2 Semi-discrete scheme

re for

In this part we will give the discretization of
(1) in space based on the finite element exterior

[18, 19]

calculus The semi-discrete scheme reads

as: find U, = (E,,B,)T €U, XV, such that
((a,Eh,gb/,)Ha(\Eh Egh) —
1 (Bys VX)) =) s V€U,
(9,B, s @i ) +(VXE, 990/,) =0, VQO/, eV,
(10

with initial condition
E,C«,00=LE,(C*), B,(+,0)=
I{B,(+) in Q.
Define A, : U, XV,—U, XV, as
0 -V, X
<V>< 0 )

Ah -

Denote

V=)' €U, XV,
and g, = (| E,[DE,,07.
scheme (10) can be rewritten as: find U, =
(E,,B)" €U, XV, such that

DU,V AUV (g Vi) =

(F,V,),VV,eU, XV, 1D

with the initial value

U,(*,0)=U,(+)=LE,(*),I/B,(* DT,

Same line as the proof of Theorem 2. 3, we have

The semi-discrete

the following energy estimate for the semi-dis-
crete scheme (10).

Theorem 3.2 Let U, =(E,,B,)T be the so-
lution of the weak formulation (10) or (11). Pro-
vided that f€ L' ([0, T], (L*(Q))%), we have

the stability bound
.

s/upTH U, o9 | +«/§J(a( |E,

0

VE) - EDds <

O="s=<

.

|+2J||f(-,s)||ds (12)
0

Furthermore, if the source term f =0, we have

|| UhO

the estimate

s

10, (o) |12 +2J<(;<\E,,

0
[Uoll? Vs € [0,T].

We also have the following divergence-free condi-

)Eh ,E/,)dS -

tion of the magnetic field B;,.

Theorem 3.3 Let U, = (E,,B,)T be the so-
lution of the weak formulation (10) or (11). For
any t€[0,T], we have V« B, ( « ,1) =0.

Proof Using the fact that VX E, €V, and
taking ¢, =d,B;, +V XE, €V, in the second equa-
tion of (10), we get d,B, +V XE, =0. Taking di-
vergence on the two sides of the above equation
and using the fact that V« I[{B, =Q,V » B, =0,
the desired result follows.

3.3 Error estimates

In this subsection, we will give the optimal
order error estimates for the semi-discrete
scheme. Firstly, we denote
I, O
0 I
Then, by the weak formulation (3), we have

(afIhU’Vh ) + (A/II/IUth ) + (g,V/l ) =

9, Vi) +(ALU—AU,V,) +(F,V),)

(13
for all Vi, = (s @) €U, XV,. Using Lemma
3.1, we have
(A LLU-AU,V,) =

(VX(LE —E) @) —(I{B—B,VX¢,) =

(VX(LE —E) s ¢,)=(G,V,),
where G=(VX(ILE —E), 0)T. Subtracting (11)
from (13), we get that £€U, XV, satisfies

(2,6,V,) +(AE, V) +H(g—gw Vi) =

(9,77+G,Vh)’ YV, eU, XV, (14
with éC« ,0) =U, —I,U,. We have the following
estimates of the quality &,

Let U = (E.B)T and U, =

I/l -

} ’ (S:I/,UiU/, ,77:I/,U7U.

Lemma 3. 4

051003-5
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(E,,B;)T be the solutions of (3) (or (5)) and
(10) (or (11)), respectively. Assume that U, €
H'" (), UeW" ([0, T],H"'(Q))and V X
Ee€eH"'(Q). For any ¢t € (0, T], we have the
following estimate

Oll}g[” ECo) | =h" U +

L

W [ AUl + VX Ely +

0
loCLED [ 1Elia +1 6O TE]- | El 2)dss
where ¢ >0 is a constant between | E|and | [E|.
Proof Taking V, =& in (14) and using the

fact that A, is skew-symmetric, we obtain

1d
2 dt
Note that

l&l? +(g—gu &) = +G.&)  (15)

(g—gnd) =
((|EDE—6(|E,DE,.LE—E) =
(c(|E[)(E-LE).ILE—E,) +
((|E]) —6(|LE|)LE,LE —E,) +
(o(| LEDIE —6(|E, DE, ILE, —Ep.

For any t € (0, T], integrating (15) in the inter-

val (0,¢) and using (2), we obtain
t

le o012 < &l + [0 +Goelds +

0
L

J\ (o(|E|)Y(E—LE),ILE —E,)|ds +

0

~ o

| ((|E|)—06(|LE|)E.LE —E,) | ds:=

lelz + >3 T.

Now, we focus on the estimates of T;(: =1,2,3).

o

Using the fourth item of Lemma 3.1, we have
Ty = [lag.lds +[ |Gl ds <
0

0 0
L

Ca [T + 19 L Il ds
0

and

T, < [l ED (B = LE) | |l ds <
0

Cr [ o ED - IEL D&l ds.
0
Using the mean value theorem, there exists a

LE|

constant ¢ which is between |E| and

such that
s(|E|) —6(|LE|) =6 () (|E| —

Then we have

LE]).

T <Cn 1o | EL. |l l&lds
0
Adding the above equations together, we have

leC* =n U B A sup[[6C] >

t

[ aUl + 19X El e + o | ED -

0

IElis + 16" (O TIEN- TE] s ds.
Then the desired result follows by Lemma 2. 2
with x = sup leC« ..

05

Using the triangular inequality and the
fourth item of LLemma 3.1, we have

Theorem 3.5 Let U = (E,B)" and U, =
(E, »B,)T be the solutions of (3) (or (5)) and
(10) (or (11)), respectively. Assume that U, €
HY (), UeW ! ([0, T],H"" (Q))and VXE
€ H"'(Q). For any t € (0, T], we have the fol-
lowing estimate

sup [UC.) = UiCeo0) | =

h! H U, “ AT HUH oo a +

I3

hHJ (Ul + VX El i + oI E[ .-

0
”E||z+1 + ‘0/(6‘” HEH ||EH/+1)ds,

where ¢ > 0 is a constant between |E]|

LE]|.

and

4 Full discrete scheme

In this section, the full-discrete scheme is
given for the nonlinear Maxwell' s equation by
employing a continuous time Galerkin method.
We show that the full-discrete scheme preserves
the energy and the divergence-free condition of
the magnetic field exactly. Finally, we give the
optimal order error estimates for the full-discrete
scheme.

4.1 Full-discrete scheme

Let J , denote the equispaced partition of the

time interval (0,T) with At:% and N the num-

ber of elements in J,. For 1<<n<<{N, we denote

t,=nAt and I, = (t,—,t,) with t, =0. For any

051003-6
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quantity v (), we denote v" =v(¢,). For any L (F,N;f ,H ydr (19)

Sobolev space S associates with the spatial varia-
bles, define P, (J,,S) (abbr. P, (S)) as the set
of continuous piecewise linear polynomials with
respect to the time variable # on J, and in the
Sobolev space S about the spatial variables. De-
fine Py (J5,S) (P, (S)) as the set of piecewise
constant with respect to the time variable ¢z on J
and in the Sobolev space S about the spatial varia-

bles.

The full-discrete scheme of the nonlinear

Maxwell’ s equations find (NJ/Z

(E,.B)T€P, (U,) XP,(V,) such that

T

J((?fjh ,Vide +J(Ah [N]h SViode +

0 0

reads as:

T T
@ v :J<F,V,A>dr, YV, €
0 0

Py (U)X Py (V)
= (ILE, aIZ[Bo )Ts

(16)
here 3, =

with initial value lNJﬁ
(o( |E1, ‘ >Eh-

Let Qy:L? (0, T)—P, be the L? orthogonal
projection operator with respect to the time varia-
ble. We have the following energy estimates for

the full-discrete scheme.

Theorem 4.1 et [NJ,I = (E ,f;h )T
lution of the full-discrete scheme(16). Provided
FELY 0, D), (L*(Q))*).
m<<N, we have the following stability bound

be the so-

For any integer 0 <

; ~ ~ 3

max | Up | 42 (JO (| EDEQEnd)" <

[T+ 2 1 £l e an

0
Proof Tuking V; |, =Uj +U; " and V), 0., =
0 in the full-discrete scheme (16), we get

ARk +Jl (AU Up + U de +

J, (& Uy +UrHde =

| O+ (18)

n

Using the skew-symmetric property of A, and

trapezoid formula, we get

1Tz 2 — Uy |2 +J1 (2, Up + U Hde =

n

The definition of Qy implies Qu U, |, = (U +

~
1Y, thus we have

H Um |

+2[ (@ Qu Uode = |T11° +
0

,III

2] (F.Qu Undr < |03 +
0

t
m

Ol 17 .

0

Then, Lemma 2. 2 implies the desired result.
Remark 3 From the proof of Theorem 4. 1,
we can see if the source term f vanished, we al-

ways have

max [T +2 (| o (|,

0<n<m

QAtElx )df)% = ”,\/2

which means the energy is preserved exactly.

Theorem 4.2 Let [NJ,, = (EI ,E,I )T be the so-
lution of the full-discrete scheme(16). Then, for

)Eh s

any 0<<n<<N, we have V * B} =
Proof On the interval I,, the second equa-

tion of (16) can be rewritten as

(Bi —By! »g0/1)+ VX (B +Er ) o) =
0. Vg, €V
Since V X (E}f +E}ffl ) €V, , taking
o =B By S (Bt
in the above equation, we get
By B +5hv < (B B =o.

Taking divergence on the two sides of the above
equation, and using the divergence-free assump-
tion on the initial data of the magnetic field B,
the desired result then follows.
4.2 Error analysis of the full discretization

In this subsection, we will focus on the error
analysis of the full-discrete scheme (16). We use
Iy :H' (0, T)—P; to denote the stand interpola-
tion operator for the time variable z. From Ref.

[10], I’ has the following property

051003-7
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|u— u H <A ” u” Hons YueH (0,T).

Denote ¢ =1, U — INJ;I. Simple calculation shows
that for any V,, € P, (U,) X P, (V,),{ satisfies the

following equation;

J, CIRI +Jl (A V,)de +

Jl (g_é‘/l’v/l)dt :Jl (9177 +G7V},)dl‘

n

(20)
with initial value {=U, —I,U,. We have the fol-

lowing estimate about ¢.

Lemma 4. 3 Let U = (E,B)T and (NJ/, =

(E,,E,,)T be the solution of equation (3) and
(16), respectively. Assume that U, € H"' (Q),
Uew"' ([0,T], H™ (Q)) and VX E € H™!
(Q). For any 0<im<{N, we have the estimate

t
m

< ac[|AULdr +57 Ul +

0

max | ¢ |

O<n=m

[171

W[ U s+ 1VX ElL o +

0
lo(LED [ 1 El i + |6/ o [IE
Proof Taking V, in (20) as
Vi ‘1“ =g+ LV |<o.,'1‘>/1” =0,

we obtain

|Ell)ds.

co

L 9,0+ Hde +Jl (A + o Hde+

n

Jl (g =g+ Hde =

1 r—1
L (g +Go g+ ydr.

n

Summing over n from 1to m<CN, we obtain

IIH

H o “2 +2J (A;,Cmeg)dt +
0

[III

2j<g—§h,czug>dt — ¢

0

Z+

/III

zj (97 + G QD) dr.
0

Noting that

[7)1 [1)1

J (AL-Qut)dt :J (AT — I'DEQuE)dr =
0 0

/711

A max gl [ |AU, | des

0==n=—m

0

by using the similar discuss as in the proof of
Lemma 3. 4, the desired result then follows.

Triangular inequality and LLemma 4. 4 imply

Theorem 4.4 Let U = (E,B)” and U, =

(E,»B)7T be the solution of equation (3) and
(16), respectively. Assume that U, € H' (Q),
Ue W' ([0, T], H™ (Q) ) and VX E €
H'(Q). For any 0<im<(N, we have the estimate

t
m

| = MJHAUH d +

max |U" — Uy

0<<n<_m

0
R (U i + 10 coummty) +

/HI

W AUy + 1V Bl +

0
loC|El)

Elia + 1o [ | El [Elde

5 Numerical examples

In this section, we will give a numerical ex-
ample to illustrate the theoretical results. We dis-
play the numerical example by using the iIFEM-
package [ 20 ]. The domain ) is choosing as the u-
nite cubic (0,1)*. We using the N E, finite ele-
ment space to discretize the electric variable E and
R T, element to discretize the magnetic field B. In
this case /=0, and the optimal convergence order
is 1. The exact solutions we choose are

sinwysinmg

E(x,vy,z,t) =sint | singrsinnz | ,

sinrsinmy
B(x,y,z,t) =
sina (cosmy —cosmz)
(cost —1) x| sinty(cosmz —cosnx) |.
sinz(cosmx —cosmy)
The ending time T'=1. The numerical results are
listed in Tab. 1.

Tab. 1  Errors and convergence orders in various norms
with Ar=Vh
b BB IV Bl 18R .
1/4 0. 3591 0. 2897 0.2882 0.0071le—11
1/8 0. 1905 0. 1506 0.1429  0.0338e—11
1/16 0. 0945 0.0777 0.0716  0.1684e—11
1/32 0. 0467 0. 0383 0.0354 0. 7745e—11
order 0. 9811 0.9725 1. 0089 —

051003-8
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From this example, we have the following
observations:

The mixed finite element method is of first
order convergence. All of the variables have opti-
mal convergence order.

The divergence-free condition of the magnetic

field B is preserved exactly.

6 Conclusions

In this paper, we develop a class of energy-
preserving mixed finite element methods for the
nonlinear Maxwell’s equations. Our methods preserve
the energy and the divergence-free condition of mag-

netic field, and have optimal convergence order.
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