一种新的WSN故障数据挖掘算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP309

基金项目:


A New Fault Data Mining Algorithm of WSN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了有效提高无线传感器网络故障数据的判别能力,在以往的研究基础上,本文结合菌群优化算法提出了一种新的挖掘方法FDMBFO(Fault Data Mining algorithm based on Bacteria Foraging Optimization)。该算法首先通过小波变换和关联系数给出了故障数据分布区间的划分方法,建立了目标挖掘函数,同时利用菌群优化算法实现对目标函数的求解。最后,通过实际样本数据进行仿真实验,深入分析了影响FDMBFO算法的关键因素,并对比研究了FDMBFO算法与其它算法之间的性能状况,结果发现FDMBFO算法具有较好的适应性。

    Abstract:

    In order to effectively improve the identification ability for fault data of wireless sensor network, a novel mining algorithm FDMBFO (Fault Data Mining algorithm based on Bacteria Foraging Optimization) is proposed by bacteria foraging optimization. In this algorithm, the division method of distribution range is given with wavelet transform and correlation coefficient, and the objective mining function is built. Then, the solving of function is presented by bacteria foraging optimization. Finally, a simulation with actual sample data was conducted to study the key factors of FDMBFO. Compared to performance of other algorithm, the results show that, FDMBFO has better adaptability.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 李晓晨,宋正江. 一种新的WSN故障数据挖掘算法[J]. 四川大学学报: 自然科学版, 2016, 53: 305.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-03
  • 最后修改日期:2015-01-15
  • 录用日期:2015-03-31
  • 在线发布日期: 2016-05-30
  • 出版日期:
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。
关闭