Abstract:The modeling of interval neural network is not only a component of interval control, but also an important role to improve the robust of systems. An adaptive algorithm of momentum factor is proposed to solve the problem of slow convergence speed on the interval neural network. In this paper, interval calculation method is used to establish the mapping model of input and output variables. By introducing a momentum term with adaptive characteristics, the steepest descent algorithm is applied to update the adaptive momentum factor. Compared with the traditional method, this method not only accelerates the convergence speed, but also overcome the disadvantages of the system steady state error and easily to fall into local minimum. According to the nonlinear experiments, interval neural networks are able to establish the zone models, and the algorithm of adaptive momentum factor increase the overall performance of the network. Classic bench mark experiments show that our work can more accurate to establish interval network model, while introducing of adaptive momentum factor algorithm also can improve the overall performance of the interval neural network