基于数据挖掘技术的学生成绩预警应用研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

G642

基金项目:

中国高等教育学会重点课题 (2016XXZD03)


Research on application of early warning of students achievement based on data mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    学习成绩是评价一个学生学习情况的最重要最基础的指标,对学习成绩的分析有利于老师掌握学生的学习情况,进行针对性地进行教学辅导,而对学生而言,能提前知道自己未来课程在学习过程中出现的情况也有利于学生发现自身存在的问题并提前加以防范.现有的研究工作大多是基于对课程、历史成绩或行为数据的分析来对学生的总成绩进行预测,很少有研究将学生行为与学生课程成绩等方面结合起来综合全面的预测学生未来所有的课程的学习情况,对此,本文从一个新的角度出发,利用学生的行为、个人属性和历史成绩等三个方面数据,根据学生未来不同课程动态的进行影响因素的选择,并利用支持向量机对学生成绩进行预警,为数据挖掘技术在教育领域的应用做了一些探索性工作.

    Abstract:

    Academic achievement is the most important and most basic indicator for evaluating a student's learning situation. The analysis of academic performance is beneficial to teachers to master a student's learning situation and conduct the targeted teaching and counseling, while for the students, knowing in advance what happens to their future learning is also beneficial for students to discover their own problems which could be prevented in advance. Most of the existing research work is based on the analysis of the curriculum, historical performance or behavioral data to predict the student's total score, while few studies focus on combining a student behavior with his or her grades to comprehensively predict a student’s learning in all future courses. This paper, from a new perspective, uses the three aspects data of student behavior, personal attributes and historical achievements which are identified by the influencing factors based on students' different curriculum dynamics in the future, the early warning of students' achievement is predicted with support vector machine, the experiment results show the exploratory work of data mining applied in education has certain significant meaning for the teachers as well as for students.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 樊铁成,刘博鹏. 基于数据挖掘技术的学生成绩预警应用研究[J]. 四川大学学报: 自然科学版, 2019, 56: 267.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-22
  • 最后修改日期:2018-12-27
  • 录用日期:2019-01-02
  • 在线发布日期: 2019-04-01
  • 出版日期:
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。
关闭