嵌入社区半径的力引导与径向树混合布局算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP393.02

基金项目:

国家自然科学基金(61403278)


Force-Directed embedded in community radius and radial tree hybrid layout algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    力引导布局算法存在无法展示复杂网络社区结构的缺陷,虽引入聚类的方式来展示社区结构,但社区内节点拥挤且排列无序,不利于观察社区内节点的结构特征与连边关系,为此提出嵌入社区半径的力引导与径向树混合布局算法.该算法首先采用Kmeans算法对网络节点进行社区划分;然后,用社区内节点数量确定社区半径,并将社区半径嵌入到社区斥力、引力中来展示社区结构;最后,采用径向树布局分层可视化各社区内节点.实验中使用拥挤区域占比、点分布偏差、节点偏差等指标验证了本算法既能降低拥挤度又能减少节点布局偏差,可视化结果显示,本算法布局社区结构明显,节点层次分明,易于理解.

    Abstract:

    Force-Directed layout has the defects of display complex network community structure.Although the cluster layout algorithm can display the community structure,the nodes in the community are crowded,which is not conducive to observing the structural features and the connected relationship of nodes in the community.therefore,Force-Directed embedded in community radius and radial tree hybrid layout algorithm is proposed.Firstly,The algorithm uses the K-means algorithm to divide the network nodes into communities.Then,the community radius is determined by the number of nodes in each community,and the community radius is embedded into the repulsion and gravity to achieve the effect of cluster layout.Finally,the radial tree layout is used for each community to hierarchically visualize nodes within the community.In the experiment,congestion ratio,point distribution deviation,node deviation and other indicators are used to show that the algorithm can reduce the congestion and the node layout deviation.The visual results prove that the layout structure of the algorithm is obvious,and the nodes are clearly structure and easy to understand.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 任淑霞,吴涛,张书博. 嵌入社区半径的力引导与径向树混合布局算法[J]. 四川大学学报: 自然科学版, 2020, 57: 73.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-03
  • 最后修改日期:2019-07-03
  • 录用日期:2019-08-28
  • 在线发布日期: 2020-01-15
  • 出版日期:
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。
关闭