基于多尺度平滑的前景提取
中图分类号:

TP391


Foreground extraction based on multiscale smoothing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    传统的Graph cuts算法可以有效地提取卡通图像前景,但是对自然场景图像效果差.为了提高前景提取的效果,本文提出了基于多尺度平滑的前景提取模型,联合分割和多尺度特征,从适当的尺度特征中提取前景.运用TV保边平滑模型对图像进行平滑,降低了图像区域的非均匀性,保护了边缘,提高了前景提取的效果.实验结果表明,基于多尺度平滑的前景提取算法降低了非均匀区域对前景提取的影响,其评测分数高于传统的Graph cuts算法.

    Abstract:

    Traditional Graph cuts algorithm can effectively extract the foreground of cartoon images, but satisfactory results are not achieved for natural scene images. In order to improve the performance of foreground extraction, this paper proposes the foreground extraction model based on multiscale smoothing, which combines segmentation and multiscale feature to extract foreground from appropriate scale features. The total variation edgepreserved smoothing model is used to smooth the image, which preserves the edges and reduces the inhomogeneity of the image, finally, improves the performance of foreground extraction. Experimental results shown that the multiscale smoothing based foreground extraction model decreases the negative effect of inhomogeneous regions on foreground extraction, and the evaluation scores are higher than those of the traditional Graph cuts algorithm.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 仝苗,何坤,朱志娟. 基于多尺度平滑的前景提取[J]. 四川大学学报: 自然科学版, 2020, 57: 271.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-22
  • 最后修改日期:2019-10-10
  • 录用日期:2019-10-28
  • 在线发布日期: 2020-04-01
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。
关闭