基于评论特征提取和隐因子模型的评分预测推荐系统
作者:
作者单位:

1.四川大学计算机学院;2.西澳大学, 珀斯 6009

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

四川省新一代人工智能重大专项(2018GZDZX0039);四川省重点研发项目(2019YFG0521)


Rating prediction recommendation system based on reviews feature extraction and hidden factor model
Author:
Affiliation:

1.College of Computer Science, Sichuan University;2.University of Western Australia, Perth 6009, Australia

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    评分预测是推荐系统研究的核心问题,通过用户的历史行为来预测用户对商品的评分,根据评分高低来推荐用户喜欢的商品.当前基于评论评分预测推荐系统普遍只使用卷积神经网络捕获局部特征或者循环神经网络捕获全局特征,忽略了将这两类特征的有效融合.针对现存问题,本文提出基于评论特征提取和隐因子模型的评分预测推荐模型,使用自适应感受野的卷积神经网络(CNN)提取局部特征,同时使用门控循环单元(GRU)提取全局特征,将不同特征融合为评论的嵌入表达.再结合隐因子模型(LFM)对用户的特征偏好和商品的特征属性进行建模.最后通过对用户和商品的嵌入表达进行评分预测.实验结果表明,本文模型在5个数据集上均高于现有基线模型.

    Abstract:

    Rating prediction is the core issue of the recommendation system research. It predicts the user's rating of the product through the user's historical behavior, and recommends the user's favorite product based on the rating. The current recommendation system based on comment score prediction generally only uses convolutional neural network to capture local features or recurrent neural network to capture global features, ignoring the effective fusion of these two types of features. Aiming at the existing problems, this paper proposes a rating prediction recommendation model based on review feature extraction and hidden factor model, using adaptive receptive field convolutional neural network (CNN) to extract local features, and using gated recurrent unit (GRU) to extract global features. Fusion of different features into embedded representations of reviews. Then combined with the hidden factor model (LFM) to model the user's feature preference and the feature attributes of the product. Finally, the rating prediction is made on the embedded representations of users and commodities. The experimental results show that the model in this paper is higher than the existing baseline model on the five data sets.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 罗莘涛,陈黎,伍少梅,王昊. 基于评论特征提取和隐因子模型的评分预测推荐系统[J]. 四川大学学报: 自然科学版, 2021, 58: 032002.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-20
  • 最后修改日期:2020-12-30
  • 录用日期:2021-01-06
  • 在线发布日期: 2021-05-26
  • 出版日期:
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。
关闭