基于多层次特征融合的Transformer人脸识别方法
作者:
作者单位:

1.中国民用航空飞行学院 航空电子电气学院;2.中国民用航空飞行学院 学院科研处;3.中国民用航空飞行学院 民航安全工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

西藏科技厅重点研发计划(XZ202101ZY0017G); 四川省科技厅重点研发项目(2022YFG0356); 中国民用航空飞行学院科研基金(J2020-126, J2020-040, J2021-056)


Transformer face recognition method based on multi-level feature fusion
Author:
Affiliation:

1.School of Avionics and Electrical,Instltute of Electronic and Electrical Engineering;2.Department of Scientific Research Office,Civil Aviation Flight Academy of China;3.School of Civil Aviation Safety Engineering,Civil Aviation Flight Academy of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    卷积神经网络中的卷积操作只能捕获局部信息,而Transformer能保留更多的空间信息且能建立图像的长距离连接.在视觉领域的应用中,Transformer缺乏灵活的图像尺寸及特征尺度适应能力,通过利用层级式网络增强不同尺度建模的灵活性,且引入多尺度特征融合模块丰富特征信息.本文提出了一种基于改进的Swin Transformer人脸模型——Swin Face模型.Swin Face以Swin Transformer为骨干网络,引入多层次特征融合模块,增强了模型对人脸的特征表达能力,并使用联合损失函数优化策略设计人脸识别分类器,实现人脸识别.实验结果表明,与多种人脸识别方法相比,Swin Face模型通过使用分级特征融合网络,在LFW、CALFW、AgeDB-30、CFP数据集上均取得最优的效果,验证了此模型具有良好的泛化性和鲁棒性.

    Abstract:

    The convolutional operation in a convolutional neural network only captures local information, whereas the Transformer retains more spatial information and can create long-range connections of images. In the application of vision field, Transformer lacks flexible image size and feature scale adaptation capability. To solve these problems, the flexibility of modeling at different scales is enhanced by using hierarchical networks, and a multi-scale feature fusion module is introduced to enrich feature information. This paper proposes an improved Swin Face model based on the Swin Transformer model. The model uses the Swin Transformer as the backbone network and a multi-level feature fusion model is introduced to enhance the feature representation capability of the Swin Face model for human faces. A joint loss function optimisation strategy is used to design a face recognition classifier to realize face recognition. The experimental results show that, compared with various face recognition methods, the Swin Face recognition method achieves the best results on LFW, CALFW, AgeDB-30, and CFP datasets by using a hierarchical feature fusion network, and also has good generalization and robustness.

    参考文献
    相似文献
    引证文献
引用本文

引用本文格式: 夏桂书,朱姿翰,魏永超,朱泓超,徐未其. 基于多层次特征融合的Transformer人脸识别方法[J]. 四川大学学报: 自然科学版, 2024, 61: 012002.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-09
  • 最后修改日期:2023-03-22
  • 录用日期:2023-03-31
  • 在线发布日期: 2024-01-25
  • 出版日期:
通知
自2024年3月6日起,《四川大学学报(自然科学版)》官网已迁移至新网站:https://science.scu.edu.cn/,此网站数据不再更新。
关闭