摘要:本文研究了二阶和四阶常微分方程耦合系统 \[ \begin{cases} &~u''''(t)=\lambda f(t,v(t)), \ \ \ \ \ t\in (0,1),\&-v''(t)=\lambda g(t,u(t)), \ \ \ \ \ t\in (0,1),\&~u(0)=u(1)=u''(0)=u''(1)=0,\&~v(0)=v(1)=0\\end{cases} \] 正解的存在性,~其中~$\lambda>0$~为参数,~$f,~g\in C([0,1]\times[0,\infty),~\mathbb{R})$.~当~$f,~g$~满足适当的条件时,~证明了~$\lambda$~充分大时,~一个正解的存在性结果,~主要结果的证明基于~Schauder~不动点定理. }