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Abstract: This paper investigates the completeness and cocompleteness of some categories of Yoneda
complete metric space. It is shown that if the morphisms are chosen to be Yoneda continuous maps or
Yoneda continuous nonexpansive maps, then the category is both complete and cocomplete; if the mor-
phisms are chosen to be Yoneda continuous Lipschitz maps, then the category is finitely complete and fi-
nitely cocomplete, but neither complete nor cocomplete. It is also shown that the category of real-valued
continuous lattice and Yoneda continuous right adjoints is complete.
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space is called a metric space instead of a general-

. In this note, following Lawvere, such a
1 Introduction

By a generalized metric on a set X we mean a
map d: X X X—[0, e | such that d(x,x) =0 for
all r € X and d(x,y) +d(y.2) =d(x,2) for all
x,y,2€X. The pair (X,d) is called a generalized
metric space. Such a space is also called a quasi-
[ In 1973,

observed that a generalized metric

pseudo-metric- or a hemi-metric**

Lawvere-
space is precisely a category enriched over the

symmetric monoidal closed category ([0, ]®,
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ized metric space.

Metric spaces can be thought of as real-val-
ued (precisely, [ 0, o= ]-valued) ordered sets.
Yoneda complete metric spaces are then a metric
analogy of directed complete partially ordered
sets, so, they are the core subject of Quantitative

[2.4] " Quantitative domain theory

Domain Theory
is a new branch of domain theory and has underg-

one active research in the past three decades. The

EZEN: MddE (1993—), B, Bt FEOIF I b, E-mail: 784296218@qq. com
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field concerns both the semantics of programming
languages and the mathematical field of topology.
A basic result in domain theory is that the catego-
ry depo of directed complete partially ordered sets
is both complete and cocomplete'™. It is natural
to ask whether this is still true for Yoneda com-
plete metric spaces. The fact that there exist dif-
ferent choices of morphisms for Yoneda complete
metric spaces makes the problem more complicat-
ed. In this paper, we investigate the complete-
ness and cocompleteness of the following catego-
ries:

+ [0, o ]-dcpo: the category of Yoneda com-
plete and separated metric spaces and Yoneda
continuous non-expansive maps;

* YcMet: the category of Yoneda complete
and separated metric spaces and Yoneda continu-
ous maps;

» LipYcMet: the category of Yoneda com-
plete and separated metric spaces and Yoneda
continuous Lipschitz maps;

+ [0,20]-CL; the category of [0, c= ]-valued
continuous lattices and Yoneda continuous right
adjoints.

It is shown that the categories[ 0, = |-dcpo
and YcMet are both complete and cocomplete; the
category LipYcMet is finitely complete and co-
complete, but neither complete nor cocomplete;
the category [0, = ]-CL is complete. These re-
sults are helpful in the development of quantita-

tive domain theory.

2 Preliminaries

A metric on a set X is a map d: X X X—[0, o]
such that d(x,2) =0 for all x € X and d(x,y) +
d(y,z) =d(x,2) for all x,y,2 € X. The pair (X,
d) is called a metric space. In this note, in order
to simplify notations, we write X for the pair (X,
d) and write X(x,y) for d(x,y). A metric space
X is separated if for all x,y€X, X(a,y) =X(y,
x) =0 implies that x=y.

Example 2.1 TFor all r,s€[0, 0], let

d;. (rys) =max{s —r,0}, dg(r,s)=max{r—s,0}.

Then both([ 0, ],d;) and ([0, °°],dy) are sep-

arated metric spaces.

Given a metricspace X, the underlying order
of X is the order << defined by <<y if X(x,y) =
0. We write X, for the set X equipped with the
underlying order.

Let f: X —>Y be a map between metric
spaces. We say f: X—Y is non-expansive if X(x,
W=Y(f(), f(y) for all x,y€X, f: X—=>Y is
Lipschitz if there is some ¢ >0 such that ¢X(x,y)
=Y (f(2), f(y)) forall x,y€X. Itis clear that a
non-expansive map is precisely a 1-Lipschitz map.

Let f: X—Y and g:Y—X be non-expansive
maps. We say that f is left adjoint to g, or g is
right adjoint to f ", if Y(f(2),y) =X(x,g(y))
for all r € X and y €Y.

The argument of Ref. [ 7, Proposition 3. 1]
gives a proof of the following useful conclusion.
Let f:X—>Y and g:Y—>X

be non-expansive maps. Then f is left adjoint to

Proposition 2, 2

g if and only if, as order-preserving maps, f:X,
—Y, is left adjoint to g:Y,—>X,.

Let X be a metric space. A weight (a. k. a. a
left module)™ of X is a function ¢: X—>[0, =]
such that ¢(x) <¢(y) +X(x,y) for all z,y€X.
A coweight of X is a function ¢: X—>[0, <= ] such
that ¢(y) <¢(x) +X(x,y) for all x,y€X.

The weights of X can be thought of as lower
fuzzy sets when X is viewed as a real-valued or-
dered set. Dually, coweights can be thought as an
upper fuzzy sets®*.

The set of all weights of a metric space X is
denoted by PX. For any ¢,¢€PX, let

PX(p, ) :§g)p()d14(go(1‘) sp(x)).

Then PX becomes a metric space.

The set of all coweights is denoted by P'X.
For any ¢, € P'X, let

P'X (¢, =sup dr (p(2) s p(2)).

Then P'X becomes metric space.

Definition 2, 31"
and a weight ¢ of X, a colimit of ¢ is an element
colimg € X such that for all x € X,

X(colimg,x) =PX (¢, X(—,2)).

Dually, by a limit of a coweight ¢ of X we mean

Given a metric space X
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an element lim¢y € X such that for all x € X,

X(x,limg) =P'X (X(x, =), ).

A metric space X is said to be cocomplete if
and only if each weight of X has a colimit. X is
said to be complete if and only if each coweight of
X has a limit. It is known that X is complete if
and only if it is cocomplete and the underlying or-
der of a complete metric space is complete''”.
Definition 2, 4412

space X is forward Cauchy if

A net {z;}:e; in a metric

irl_lf}iu‘EIX(rj sxx) =0,

An/ejl/ementx € X is a Yoneda limit of a for-
ward Cauchy net {x;},e; if for all y€ X,

X(x,y) :irllfs_gPX(xj sy,

A metric spajce is Yoneda complete if every
forward Cauchy net has a Yoneda limit.

It is known that the underlying order of a
Yoneda complete metric space is directed com-
plete, see Ref. [13, Proposition 4.5 ],

A weight of a metric spaceX is said to be
flatt') if o= i?fS-HPX (—,x;) for some forward
Cauchy net (x,ﬂ),ﬂje/, in X. Each weight of the form
X(—,x) is a flat weight, since it is generated by
a constant net. The set of all flat weights is deno-
ted by FX.

Proposition 2, 5'°)  For each forward Cauchy
net {x; };c; in a metric space X, x is a Yoneda
limit of {z:};e; if and only if z is a colimit of =
ir}fs_liPX( —,x;).

]/Corollary 2.6 A metric space X is Yoneda
complete if and only if the map

y: X—>FX,x=X(—,2)
has a left adjoint, denoted by colim; FX—>X.

The map y: X—FX is known as the Yoneda
embedding.

Example 2.7
([0,e0],d.) and ([0, = ],dg) in Example 2. 1

are Yoneda complete.

Both of the metric spaces

Yoneda complete metric spaces are a metric
version of directed complete partially ordered
sets. In this note we are concerned with the com-
pleteness and cocompleteness of some categories

of such spaces with different kinds of morphisms.

Definition 2. 8

metric spaces is Yoneda continuous if for each for-

A map f: X—>Y between

ward Cauchy net {x; };c; in X and each Yoneda
limit x of {x;},ers {f(x;)}ic; is a forward Cauchy
net in Y with f(x) as a Yoneda limit.

It is trivial that each Lipschitz map f: X—>Y
maps a forward Cauchy net in X to a forward

Cauchy net in'Y.

3 Main results

Proposition 3. 1 The category [0, = |-dcpo
of Yoneda complete and separated metric spaces
and Yoneda continuous non-expansive maps is
complete,

Proof Tt suffices to check that [0, e J-dcpo
has products and equalizers.

Let (X;);e; be a family of Yoneda complete

metric spaces. Equip X = _]é[] X; (the Cartesian
1<

product of X;) with the metric

X(&x,y) :ig?Xj (xjsyi).

Then X is Yoneda complete and Yoneda limits in
X are computed componentwise by Ref. [2, Lem-
ma 7.4.13]. Tt is clear that X is a product of (X;
)je; in [0, °o]-dcpo, hence [0, c>]-dcpo has prod-
ucts.

Given a parallel pair ofmorphisms X %Y in

g
[0, e ]-dcpo, the subspace

E={zeX | f(x)=g(x)}
of X with the embedding map i: E— X is easily
verified to be an equalizer of f and g. So [0, oo ]-
dcpo has equalizers.

Proposition 3. 2 The category [0, = |-dcpo
is cocomplete.

Proof Since [0, c=]-dcpo is complete, then
by Ref. [ 16, Theorem 23.14], it is sufficient to
show that [0, e |]-dcpo is well-powered and has a
coseparator.

First, we show that [0, o J-dcpo is well-
powered. It suffices to show that every monomor-
phism f: X—Y in [0, c= ]-dcpo is injective. Sup-
pose that f(a) =f(b). Let * be a singleton met-
ric space and g,h: * =X be given by g( %) =a
and h( ¥ ) =b. Since fg(*)=fh(*), it follows
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that a=g( % ) =h( %) =b, which shows that f is
injective,

Second, we show that [0, o= ]-dcpo has a co-
separator. We show that the metric space ([0,
oo ], dr) is a coseparator. Let X :le be two

g
different morphisms in [0, e J-decpo. Then f(x)
#g(x) for some x € X,

Without loss of generality, we assume that Y
(f(x),g(x)) #0. Define h:Y—>[0, =] by h(y)
=Y (y.g(x)). Then hf(x) #hg(x). It remains
to show that A is non-expansive and Yoneda con-
tinuous. For all y,.y, €Y,

dr(h(y1)  h(yy)) =

Y(y1,2(x))OY (yy.g2(x)) <Y (y1552) 5
hence A is non-expansive. Assume that {y, },c; is
a forward Cauchy net in Y with y as a Yoneda

limit. Then Y(y,2) = infir_lfs‘gp Y (y;,2) for all

i j=1

z2€Y, so
dr(h(y),r) =Y (y,g(2)) Or=
infs>pY(yj ,g(2)) Or=

i g=t

infsup(Y(y;,g(2)) Or) =

LEES

1nfsgde (h(y]) ’ I’).

1 1=t

So h 1s Yoneda continuous.
Remark 1

spaces being separated is not essential in the a-

The requirement that the metric

bove proposition, A very minor improvement of
the argument shows that the category of Yoneda
complete maps is both complete and cocomplete.
This remark also applies to other conclusions in
this note.

Proposition 3.3  The category YcMet of
Yoneda complete and separated metric spaces and
Yoneda continuous maps is complete and cocom-
plete.

The proof is similar to that of Proposition 3.
1 and Proposition 3. 2, so it is omitted here.

Proposition 3.4 The category LipYcMet of
Yoneda complete and separated metric spaces and
Yoneda continuous Lipschitz maps is both finitely
complete and finitely cocomplete,

Proof Since the singleton metric space is a

terminal object and the empty space is an initial

object in LipYcMet, it suffices to check that
LipYcMet has binary products, equalizers, binary
coproducts and coequalizers. That LipYcMet has
binary products and equalizers can be verified in a
way similar to that of Proposition 3. 1.

Let A, B be two Yoneda complete metric
spaces. Equip C=A [IB (the disjoint union of A
and B) with the metric

Alx.y), z,y€A,
Clx,y) = B(x,y), x.yEB,
oo, otherwise.
Then, C is a Yoneda complete metric space by
Ref. [2,Lemma 7. 4. 127]. Tt is easy to see that C
is a coproduct of A and B.

Now, we show that LipYcMet has coequali-

zers. Let (X,d,) :f’> (Y, d,)be two morphisms
g

in LipYcMet. Assume that f is ¢;-Lipschitz and g

is c;-Lipschitz. Let c=max{c;,c,}. Consider the

diagraZ?m

f{ey) 1Y {1/e) (1)
L e N — ) nil)
(X, dx) W (Y, dy) T (Y, dy/c)y ——— (C, dc)

h (ey) h (1) 2 (1

14 { Uee,)
(4, dy) ﬁ (Y, di/ccs) ,
where, for example, the symbol f{c¢;) means f is
a Lipschitz map with a Lipschitz constant c;.
Then f, g are both non-expansive and Yoneda
continuous (X, dx)—>(Y,dy/c). By Proposition
3. 2, there exists a Yoneda complete metric space
(C,d¢) and a non-expansive Yoneda continuous
map 7: (Y.dy/c)—>(C,d¢) such that C is a co-

S/
equalizer of (X,d,)=—=%(Y,d,/c) in [0, o= ]-dc-
B

po. We claim that =: (Y,dy)—>(C,d¢) is a co-
equalizer of f and g in LipYcMet. To see this, let
(A,d,) be a Yoneda complete metric space and h;:
Y.,dy)—>(A,d,) be a c;-Lipschitz map.

Since h: (Y,dy/c)—>(A,ds/c c;) is non-ex-
pansive and Yoneda continuous, there exists a u-
nique non-expansive and Yoneda continuous map
5:(Cyde)—>(A,dp/cc3) such that h =sm It is
trivial that s: (C,d¢:)—>(A,d,) is the unique Lips-
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chitz and Yoneda continuous map satisfying that
h=sm

Proposition 3. 5 The category LipYcMet is
neither complete nor cocomplete.,

Proof ILet X,=([0,c°],d,) for each n €N.
We show that the family (X,),cn does not have a
product in LipYcMet, hence LipYcMet is not
complete,

Suppose on the contrary that (X, ),cx has a

product (P iI>X,, ).ex with f, being c¢,-Lipschitz.
Define a metric space D={a,b} by letting D(a,b) =1
and D(b,a) =0. Then the map g,:D—>X,, given
by g,(a) =0 and g,(b) =nc,, is n ¢, Lipschitz
and Yoneda continuous. By the universal proper-
ty of products, there is a unique Lipschitz and
Yoneda continuous map h; D—P such that g, =
fuh. Then ¢,P(h(a),h(b))=X,(g,(a),g,(b)) =
nc,. Consequently, P(h(a),h(b)) = oo contra-
dicting that A is Lipschitz.

Next, we show that LipYcMet is not cocom-
plete. For each n, let X, be the metric space D
defined in the previous paragraph. We claim that

(X,),en does not have a coproduct. Suppose on

the contrary that (X,,ic )aen is a coproduct with
f, being ¢,-Lipschitz. For each n, define g,:X,—
([0,2],d.) by g,(a) =0,g,(b) =nc,. Then, g,
is n ¢,~Lipschitz and Yoneda continuous. By the
universal property of coproduct, there is a unique
Lipschitz and Yoneda continuous map A from C to
([0,90],d.) such that g, =h f,. Assume that h
is k-Lipschitz. Then

ke, =kc, X, (a,0) ZkC(f,(a), [, (b)) =

di(h f,(a)h f,(b)) =
di(g.(a),g,(b)) =nc,,
which shows that £#=co, a contradiction.

Finally, we discuss the completeness of a
subcategory of [0, e= -dcpo. This subcategory is
a metric version of that of continuous lattices. Be-
fore introducing this subcategory, we need some
preparation,

By Corollary 2. 6, a metric space X is Yoneda
complete if and only if the Yoneda embedding v:
X—FX has a left adjoint.

Definition 3. 6!

to be a [0, o= ]-domain (or real-valued domain) if

A metric space X is said

it is Yoneda complete and is continuous in the
sense that the left adjoint colim; FX— X of the
Yoneda embedding y: X—>FX has a left adjoint,
which will be denoted by | : X—FX.

U8l Every retract of a [0,

Proposition 3. 7
oo J-domain in [0, e |-dcpo is a [0, == ]-domain.

A separated and complete[ 0, o= J-domain is
said to be a real-valued continuous lattice (or, a
[0, o J-continuous lattice). Write [0, o |-CL for
the category having real-valued continuous lat-
tices as objects and Yoneda continuous right ad-
joints as morphisms. It is clear that [0, o ]-CL is

(97 of continu-

the counterpart of the category CL
ous lattices in the metric setting.

Proposition3. 8*  Real-valued continuous
lattices are exactly retracts of powers of the met-
ric space ([0, °°],d;) in the category [0, oo ]-dc-
po.

Proposition 3.9 The category [ 0, oo ]-CL is
complete,

Proof It suffices to show that [0, oo ]-CL
has equalizers and products. Let (X;),c; be a
family of real-valued continuous lattices. Since
each X, is a retract of some power of ([0,°],d;)
in the category [0, e ]-dcpo, then so is the prod-
uct [D[Xi of (X)) in [0, o= ]-dcpo, hence ID[Xi is
a [0, oo J-valued continuous lattice.

For each j € I, by help of Proposition 2. 2,
the projection p; :’EIX,-»X]- is easily verified to be
a right adjoint. So ilellXIv is a product of (X;)e; in
[0, o= ]-CL.

Given a parallel pair of morphisms in X =Y

2
[0, o ]-CL, we claim that the subspace

E={zeX | f(x)=g(x)}
of X with the embedding map : E—=X is an equal-
izer of f,g. Since both f and g are right adjoints,

U So the subspace E is

they preserve limits
closed in X with respect to limits. Hence it is
complete.

Since the embedding i: E—X preserves limits
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and E is complete, i has a left adjoint Ref. [ 11,
Proposition 6. 8], say, h; X—E. Then.

* i is Yoneda continuous, since both f and g
are Yoneda continuous, hence E is closed with re-
spect to Yoneda limits;

* h is Yoneda continuous, since every left
adjoint is Yoneda continuous;

* hi=1idg, since h: X,—E, is left adjoint to
i:E;—>X,, hence h(x) is the meet of {¢ €E | =
<e} in E,, sohi(e)=e for all e€E.

Thus E is a retract of X in [0, e= ]-dcpo, hence a
[0, c© ]-domain by Proposition 3. 7. Therefore E
is an equalizer of f and g in [0, o= ]-CL.
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