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An estimation of the long time stability of the nonlinear Schrodinger equation

LI Hai-Kuo
(School of Mathematics, Sichuan University, Chengdu 610064, China)

Abstract: In this paper. the stability of the nonlinear Schrédinger equation iy = —A¢+F(|¢|*)¢x €T
is considered on the one-dimensional torus, where T = R/27Z, F:R—>R is analytic, F(0) =0 and

F’(0)#0. Under the regularity index s fulfilling that — 1 <s<1 we give an estimate for the long time

stability of small amplitude solutions with initial data of size e, where ¢ is positive and sufficiently small.
More precisely, we prove that the modulus of the Fourier coefficients of solutions is approximately con-
stant for the time order e~ (*779) .
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tion. In high regularity, it is well known that we

1 Introduction . , .
can construct a canonical transformation which

We consider the Nonlinear Schrodinger equa- transforms the Hamiltonian functions of the par-
tion (NLS equation in brief) on the one-dimen- tial differential equations into corresponding Birk-
sional torus hoff normal forms. Birkhoff normal form for long

ig=—Ap+F(¢|)¢, x€T:=R/27L (1) time dynamic behavior of Hamiltonian partial dif-

where F:R—R is an analytic function on a neigh- ferential equations has been widely investigated
borhood of the origin, F(0) =0 and F'(0) #0, by many authors, seeing Refs. [1-11] for exam-
i. e. the nonlinear part of (1) is a cubic perturba- ple. In these examples, the NLS equation is stud-
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ied by using the internal parameters in Refs. [4,
7]. Specifically, rational normal form is estab-
lished for the NLS equation in Ref. [4]. Addi-
tionally in Ref. [ 7], normal forms are established
by taking the initial value as parameters.
However, there are few results in low regu-
larity. The canonical transformation concerning
Hamiltonian functions is unavailable under s<C1.
Consequently, long time stability for solutions of
equations cannot be obtained by previous tech-
nique. In Ref. [12], Bambusi introduces a meth-
od of constructing approximate integrals of mo-
tion concerning Hamiltonian functions and proves

the long time stability of solutions of a defocusing

NLS equation with 0<s <%.

conclusion ( Theorem 1. 1), the results in Ref.

Compared with our

[12] is a large probability averaging theorems,
which considers lower regularity and exploits the
invariance of Gibbs measure with respect to the
According to Refs. [ 13,

147, the invariant Gibbs measure could be estab-

defocusing equation.

lished only when s<i. In our conclusion, we

2

% <s<<1, which indicates that the invar-

iant Gibbs measure couldn’t be set up. And the

consider

nonlinear Schrédinger equation whose form is
more general. Besides, we obtain the longer sta-
bility time as well.

Consider the Fourier form of ¢ € H',

¢ = Zg[a(l)e'kl s o = J g[)(l)ei'hldl
kEZ
|2 Z <:I€>2K sbk ’
kEZ

where (k) =+1+k%,
In the following theorem, we study the long
time stability of small amplitude solutions with

the low regularity for equation (1).

Theorem 1.1 For % <s<1 and k €Z, there

exist constants C, ¢ >0 such that if the initial
datum ¢(0) € H* fulfills

(2
then the solution ¢ of equation (1) has a large

IR RAE IO % 2
probability of satisfying
BB g |7 = (0] 7] <e? (3)
for t<Ce (1459,
Remark 1 For equation (1), we note that

F’(0) #0 in advance, since we need to eliminate
more terms by using four-order normal form in
Meanwhile, the

proof of Theorem 1. 1 is based on the construction

the subsequent proof process.

of approximate integrals of motion in Ref. [12].
For convenience, we keep up with some notations
and terminology of construction process from
Ref. [12].

The paper is organized as follows. In Section
2, we substitute e¢ for ¢ to carry out scale trans-
formation in order to simplify the subsequent
proof process. Given k€ Z, we construct the ap-
proximate integral of motion with regard to the
Hamiltonian function of equation (1). For elimi-
nation of four and six order non-resonant parts,
the form is consistent with the construction in
Ref. [127]. Afterwards, we take the initial value
as parameters to eliminate six-order terms which
are resonant and informal. The idea is introduced
by Bourgain in Ref. [7]. At this point, for reso-
nant indexes (ky sks s ks by sks ks ) €Z°, the small
divisors &, &, T&, —&, —&: —& appear here.
In order to obtain corresponding results, it’s nec-
essary to impose a Diophantine condition. As a
consequence, we can obtain the approximate inte-
gral of motion. And then we complete the esti-
mates of the remainder terms. In Section 3, we
complete the measure estimate concerning param-

eters of the small denominators. Therefore, we

define the Gaussian measure with 1 <s<<1. Fi-

2
nally, combining the remainder estimates and the
result of the measure estimate, Theorem 1. 1 is
completely proved in Section 4.

2 Construction of the approximate
integral of motion

Firstly, we substitute e for ¢. After scal-

ing, equation (1) can be rewritten as

ig=—AY+e?F (0)]¢]* ¢+€ F(O)\¢\ o+

021006-2
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h.o.t
where h. o. t denotes higher terms. The Hamilto-

nian of equation (1) is written as

H=H, + i}sz (4)
where -
H, :Zij |V (o) |2das
o (5)
mfz,ﬁjwﬂml
Hy = O Mg e ©)

Define the Hilbert space {2(Z,C) of the com-
plex-valued sequence 2 = (¢ ) ez, with

P= 2k

kEZ

The Sobolev norm | ¢, i
Correspondingly, one has

H, = >k

kEZL

2 /
H, =€ F2(O) D

g[)k‘z < oo,

D, Szk;; SZk,l (7

Cky hy kg k) EL
ky -y =yt

2/ 2 G—D 2j o
H, =& (O)Eﬂsbqﬂsmq,f%

=1 g=jH1
(8
Define
& =lg O] (9
= | ¢ |2 (10)
Je=I —& (1D

The Possion bracket of two Hamiltonian func-

tions F and G 1s

< (IF G
7712 (g)s[,k 9;[%

kEZ

IF 9G>
d gy I/
For any n €N, we denote the resonant index set

by

MZn = {k = (k],"',kzn) 6 ZZH | 2 kj -
ji=1

on 2n

kaZk”Z 5.

s R =ntl
Define the operator Ly, ={H,, * }, and Ly, is an
invertible operator. For a given polynomial F,
FVu, and FRu, represent resonant and non-reso-
nant parts of F, respectively. For instance,

HYs, =27, =822 F(O)Zsb"lsb’? ‘7[}’ ‘7[}&1’

ke M,

Hin =<0 3y 0

2 kel =yt
[
Rk kA
For a given k€ Z, define
=| g |? (12)

and
X4 = 7L;11 H{EHZ ’

Ry,
X6 **Lm( {X19H1”>}+{X4az1}+Hs> i

(13)
N 1 N N,
Zs =Hgn, JV(? {X& s HiH, )+ {X’l Ly} )
(14)
According to (12)~(14), we define
) 1., )
O =L, | |?s Pus :?Lfﬂ || 2+
% (15)
Write
Zs =¢' E Z(S,ksbkl D, i, ;bkl ;/)}\,5 ;/)/eﬁ .
ke Mg
Considering that
Rs ={Z;, D5 } (16)
we get
R; 2 Ze k(25» Kk
K€ M
Eakj.k)% G, e, i, e, amn
)

1, j=k,

] The above process can be
0, j#k.
found in Ref, [12].

Z, can be computed directly and is given by

Zo=eF [ (D 1) - 121& (18)

kEZL kEZ
=& +J.

where Skj,k = {

Seeing (11), we have I Taking it into
(18), one gets

Z4 - E2F/(O)

(D)~ 28 - 2a 5> Ui |

kEZ kEZ kEZ kEZ
(19)
Choosing Ekelgk]k from Z,, we have
@ Ed o iy B, s | =
1, T et 8 — & — & —E)
Oy, . D, i (20

We expect that (20) is exploited to eliminate

some terms of Ry, so the problem of the small
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divisor &, + &, T&, —&, —&. — &, should be
dealt in advance. Therefore, it’ s necessary to
consider the following Diophantine condition:
there exist a, ¥ >0 such that for any N large e-

nough and k= (ky .ks ks ks ks ks ) €Z°, one has

&, &, &, —E —& —& | =L @D

Na
where k contains at most two large indexes (. e. ,

larger than N+1).

We decompose R; =RY JrINQG as follows

. 3
%\r =— et E Zs,k<28kj~k_
=

ke Mg
13 (=N
6 — — —
2 8/\'] -k ) sbkl Sbkz sbkg ’)[}IH ¢k3 Sbkﬁ (22)
j=4

_ 3
Ry =—i¢' Z Ze,k(zé\klék_
=1

kGIWG

3 O<N
6 — — —
D20k 0Pk, iy By i, e (23)
j=4

where p5 (k) denotes the third largest number a-
ko |3l | o Tkl s R | TR | s RY

contains terms with at least three large indexes

mong { [ |

and R; includes terms with at most two large in-

dexes. And then, we define

’qV)k.e = 2 AG.kQZJ}zl D, G, Jfkl 4:0% ;Z&G-

* Zou (2] -2,
3 Ze,k( jzlakj.k =4 k k

Ek.ﬁ = 2

G F O, T8, T&, —&,

PROSESN

\
follows. In view of (12)~(15) and (25), we de-

fine the approximate integral of motion as

D =Dy, + By DB+ Dy T L, By (26)
The action result of motion integral is as follows.

Lemma 2.1 Given k€ Z, considering (7)
(8) (26) and the Diophantine condition (21),
we have

{H,®"” } =R} +R-g 27
where RY is defined as (22), R~ denotes terms of

degree at least 8 and

Z H?;a@k?

2] 7q)k1 +Z H?Jaq)k(s

J:2 j=2

{ )Z Jﬁ,cbkg}

kEZ
S (Hy Dy ) +2 {Hy L, @5} (28)
j=3 =2
Proof We compute

{(2 Ik>27%k.6}:0, {2 gg,%k_ﬁ}zo

kEZL REZ

9

noting that the initial value &, is a constant. Con-

_Ek., _5 )

KEM,
3 O<N
Computing
156+{*€ZF,(O)ES}¢];(,E)1§’6}:O (24)
rez
|
‘/J/H Sbhv Sbﬁ Sbﬁ Qbﬁ ‘,bk (25)

sidering (19) and (24), one gets
Rs + {Z4 95k,6 } -
2V ~
{7571? 0 Jﬁ,cbk.s}+Rg\’ (30)

2 kEZ
combining (29) and (30), Lemma 2. 1 can be eas-

ily proved by using Lemma 4. 1 in Ref. [12].
Then we estimate the remainder terms RY
and R—;.
Lemma 2.2 Given k€Z, Ry in (22), R-s in

(28) and %<s<1, there exists a constant C >0
s.t. for N>0 and a,}/>O,

k

z|! (31)

|R_s | <C€6N°’ k) *
Proof For any k€Z, define
AN ={ (ks ks akmk; NIDRS

75 | gy Ty ks ke ="k
By — kG —E 71e( -

M3 (k9k2 9k3 9k4 9k5 9k6 ) >N} ’
AY ={ (kyskysky sk sks) €

75 | By TR R e =k
B 1 — 1~ =k

M3 (kysky ks sk sks 9k) >N}

(32)
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In terms of (12) (16) and (22), for j € PP < ¢ <k>’4“’2 (B, W’/« E </e42\ “l’ﬁ 2.
{1,+-+,6}, there exists at least an index k; equal 2 N
to k in each monomial of RY. We have (ks )™ 2k [ |7 <

‘Rﬁr =< ‘ 84 2 ()[}ksbl’z S[)kg ;[}h ;[}/85 ;b/% ES ]<\[k2§743 ” Z| ? (38)

4
PI So, one has
4 4 —2s
‘e %gf}kl De, Py Pr, D sbk‘ (33) Pl < € <k} EE (39)

PII
<” denotes that there exists a positive

“

where
constant C independent of N for a <b (but maybe
depends on ¥) such that a <<Cb.

For PI, one has

¢ Zslw Gy e, s O, (34)

Due to the null momentum condition, there exists
at least an index [ € {2,3,4,5,6) s. t. |k/| =

k|
5

(k)" * thanks to scaling. In view of the definition

2

are of order

. Then both [¢[* and [¢,

of Ay {kysksskysks ke \k, contains at least one
large index. Without losing generality, we as-
sume that £, =k, and k, is the large index in PI.

Then, (34) can be rewritten as
PE = &' D) i, ki, o, (ks)* oy (ko)
A
_ 1 ,
o Ty sy gy |
Exploiting Cauchy inequality for (35), we have

PR SES <k>7452 </€3>2“ ¢,% ‘2 ‘%31 ‘2 <k5>2“ .
N

(35

— -~ 1
2
‘Sbks (Ibke; ‘ ;1 <k§>28 <k5>2.\- <k6>2.\-

(36)
Due to
j/ez +hy —ky —ks —ks=—k
kS 15—k k2 k=K,
if k3, ks, kg are fixed, then one gets (k,,k,) has at

most four conditions. Therefore, we have

|
D NIRRT

(37

......

Thanks to % <s<<1, we obtain (37) is bounded

by a constant. Then, as a result of assuming k&, is

the large index, (36) becomes

N°
Similarly, we can apply the proof of PI to the
estimate of PII and obtain the same results as
(39). Then (31) is proved.
Recall the construction of the approximate
integral of motion . e., (12) ~(15) and (25).
For integer n=1 and finite order monomial ¢,

sbk”ng”H "'@k? in &, RY and R-g4, there exists

Lisl, € {1,++.2n} and C1sCo >0 5. t. |k | =
1k| 1kl
C. o |k =,

For R—g in (28), we define

R, —E{sz,cbkz +2 {Hy @, )+

j=4

{HZ/ ’®k6}
=
Referring to the proof process of (31), we have
‘R}g,l‘ i&ﬁ <k>72'; Z 6 (40)
=&, tJ,in (11), we take J, =O(&}).

J. is of order €? as a result of the scale transfor-

I\.

Due to I,

mation. By computing

{JZFKO)Z Ji,?bk,s}:

2 kEZL

, ZGk(Z 2 3» k)

ke M; gﬁ, +5k) +8ﬁ3 75& 7{:/7 7gk

Z ( Z 8/,” ok, Z é\km ok, )]/ sb/ ¢,

m=1 m=4

le

&1 %5 &5 ’

we obtam

2 / ~
‘ {—MZJ%,@.G} ‘ < Ne (k)

2 kEZ

4D
Let

- 2 {HZj !%k,ﬁ } =+ E {sz »Lm %k,s }
=3 j=2

we have

S (Hay e | < N o [ 2]

j=3
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| D) (Hy oLy, ®sd | <N o> 25
j=2
Then we obtain
|Ros.. | <eNe (k)2 |8 (42)

Because of scaling. || z|, is of order 1, by recalling

(40) ~ (42) one has |R-s| <e*N* (k) > | 2]
Then we get (32) and end the proof.

6
s

Concurrently, we could obtain the following

result.
Lemma 2.3 Given k € Z and %<s<1,

there exists a constant C>0 s. t. for a,y >0 and
N=>0, ¢*N“<1,
| B — | g | 7| <Ce?Ne (k) *
Proof
(26), one gets

| — | b || = | By + By +Bus +Ly, Dus |-
According to (12) ~(15) and (25), consulting
the proof of Lemma 2. 2, and noting the order 1

: (43)

By recalling the motion integral

P4

, thanks to scaling, we have
[ o =g <
(e +e' +e?Ne+e' N ) (k) 2| 2]
Due to ¢ N* <1, we obtain e' <<e¢'N¢ <<g? <
e N
[ B — |
The proof is end.

of |2

2
s

Hence

2

éezNa <k>*23

z| 7.

3 Measure estimates

In this section, we complete measure esti-

mates with respect to parameters. At the begin-

ning, for l<s <1 we consider

2
H(p) = D) (A +ED | g |2,

kEZL
which defines the Gaussian measure

e dgdy
1G9 Jodd)

ef(1+k'1> Lo 17 dgbkd ;bk

kEZJC e D Ly 1 dged ¢

duy =

The relevant theory of Gaussian measure could
refer to Refs. [12,15,16]. We only consider the
measure estimate in the unit sphere as a result of

scaling and the initial condition (2). Let S denote

the unit sphere i. e. , the corresponding region of

| z]l,<<1. On the basis of definition of Ly s one has

e (S) >0 under %<s <1. Hence we could rede-

fine the Gaussian measure restricted S as follows.
For any set ECS, define

(B

Note that x, |s(S) =1. For asy>0 and N>0, de-
note

N, ‘5!«1 Jfsz +5k3 7&,‘ 75/;5 *&6 <]\}]/a ;.
We have the following lemma.
Lemma 3. 1 For any positive y small

enough, %<5<1 and ¢ =8, there exists a con-

stant 6>O such that for N>0 the measure of Q) is

smaller than 6}/.

Proof For any k = (ki ,ks k3.kisks.ks) €
M, we have

ki tky ths =k, Ths +kg (45)

kRS RS =R +RE RS (46)

Suppose that k;, ks, ks sk, are bounded by N, ks
and k; have at most four conditions in terms of
(45) and (46). Then the number of possible com-
binations is at most (2N +1)* X4 if 45 (k) <N,
i.e. , k contains at most two large indexes.
Recalling the definition of RY, the terms
with {ki,kssks ) = {kisks,ks} are equal to O,
thus RY contains only terms with {k ks sks} N
{kisks ke ) = by (45) and (46). For j,i1+i, €
{1,-+,6}, let &' ={k; € k| Y ki s ki, Ek’,/e,nl #

k,vz}, and M denote the cardinality of k'. We
can obtain
‘ /PCe)) <4(2N+1)/1
e s = 8G =TS

LS a1y, |2 -
Jnez‘j“ i1 H/@Jek'd‘l’dSb

JCM ¢ Dk en D g, |7 ijek, dgy d g,
Let w= |6, +&, +&, —&, —&. —&, | and define

a truncation function

47

4

Oa T)% ’
(x) =

1, x<]\)]/a.
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With the transformation ¢ =p., €% + p. = | &, B
0s, €[0.2x], (47) is bounded by

7Zk,ek’(1”‘1>‘%.2
kae ' 7k (w) | | /eJEk'Pkf d’IOk,
3
Dk ek Ay I |
kae j T kek Pk dor,
9%

(48)

2 B
Ok, | accord

4 2N +D*
122 (S)

where w = | of, i, Tpi, —pi, —pf,
ing to (9). Taking the transformation »; =(1+

/zf)pfj , (48) becomes
J I |

4 (2N +1)*
,(S) -
He ijek’JRAe 7 dmj
(49)
where
1 1 1
w:|1+/€%7]/e| +1+k*217]k2 +1+;€§77k3 o
1 1 1
Ta ™ TR Tha e

Let & denote the index corresponding to the
{1k; |},

6

> i
S

j=1

smallest element among We consider

that (a;)}-; € Z° and define A =

= {0.1.2.3} for i € {1.2.3}. a =
—3} for{€{4,5,6}, >} |a;| =6

where «;
{ 0 [ 1 2 )
and @ #0 denotes the correspondent coefficient of

k. Then, let A = 2 Clearly,

1 +/e4’7”

7, =
Jl{+e K dmj L

Afterwards, there exist constants C, 6>O such
that (49) is bounded by

4N+ D! §
pROSEL J\ e, -

R,

chek\k

4 (2N + D!

Jﬁ(ﬁﬂ) 1E dpy <
L CaE ST

ﬂ(i\ﬁfn)

e do. Jj YO dgr <
H\J R SN
CN*' k'y < Cy

e (SHN® \/18(5)]\]‘rg

Noticing that | 2| <N and « =8, Lemma 3. 1 is

< Cy.

proved.

4 The proof of Theorem 1. 1

<8 thanks to scaling. Ap-

plying Lemma 2. 2, one has

e L (k) ?

N
RY| <=k

‘R/g‘ <€6Na <k> z .

2

1
Computing <~ =N, we take N =¢ .

N Then

2s
we obtain | {H,®{® } | <e'"e+ (k) ». In terms of

LLemma 3. 1, we choose ¢ =8. Particularly, we

take N=¢ 7. One has

[(H @@ | <tk (50)
Then, by adopting Lemma 2. 3, we have

[0 — | *| = (ko 51
Due to

[ [ = [ {H. @} | @ (¢(0))—

@ (9(0)) = | 6 (g,

one has

| DY (p(1)) — B (¢p(0)) | <

[ TR o< o] (HLa ]

In terms of (50), one gets
D (1)) — D (¢(0)) | <te* 5 (k)2
To prove Theorem 1.1, we have
O =g (0|7 | <
| O (p(1)) — D (P(0)) | +
| D (p()) — |
| D (p(0)) — [ (O ]2 ].
Using (50) and (51), we have
| ()|
There exists a constant C>0 s. ¢.
GO=| g [ = [ (0 2] <1,
for t<<Ce (799,
inal order e? of | ¢, |? and fix y >0 small enough in

2
1+9 +€7.

Finally, we restore to the orig-

Lemma 3. 1. Because k can be taken arbitrarily in

Z, Theorem 1.1 is proved.
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