Global structure of positive solutions for first-order periodic boundary value problem with parameter
DOI:
Author:
Affiliation:

Clc Number:

O175.8

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
    Abstract:

    In this paper, we use the Dancer's global bifurcation theorem to study the global structure of positive solutions for the following first-order periodic boundary value problem with parameter $$ \left\{\begin{array}{ll} u'(t)+a(t)u(t)=r f(u),~~\ \ \ t\in (0,1),\\[2ex] u(0)=u(1). \end{array} \right. $$ where $r$ is a posotive parameter, $f:\mathbb{R}\rightarrow \mathbb{R}$ and $ sf(s)>0,~s\neq0,~a:[0,1]\rightarrow[0,\infty)$~and ~$a(t)\not\equiv0$~on any subinterval of [0,1].

    Reference
    Related
    Cited by
Get Citation

Cite this article as: Wang Jiao, Zhu Yan. Global structure of positive solutions for first-order periodic boundary value problem with parameter [J]. J Sichuan Univ: Nat Sci Ed, 2019, 56: 413.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 06,2018
  • Revised:July 03,2018
  • Adopted:September 17,2018
  • Online: May 28,2019
  • Published: