Existence and uniqueness of positive solutions for second-order nonlinear integral boundary value problem
DOI:
Author:
Affiliation:

Clc Number:

O175.8

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
    Abstract:

    In this paper,by using the method of generalized Krasnoselskii's contractive fixed point theorem in bimetric spaces we study the existence and uniqueness of the positive solutions for the following second-order nonlinear integral boundary value problem\$$u''+a(t)f(t,u(t),u'(t))=0,~t\in(0,1),$$ $$u(0)=0,~\alpha\int_{0}^{\eta}u(s)ds=u(1),$$ where$~0<\eta<1,~0<\alpha<\dfrac{2}{\eta^{2}},~a\in C([0,1],[0,\infty)),~t_{0}\in[\eta,1],~a(t_{0})>0,~$and$~f:[0,1]\times[0,\infty)\times R\rightarrow[0,\infty)~$is continuous.

    Reference
    Related
    Cited by
Get Citation

Cite this article as: Cai Hui-Ze, Han Xiao-Ling. Existence and uniqueness of positive solutions for second-order nonlinear integral boundary value problem [J]. J Sichuan Univ: Nat Sci Ed, 2019, 56: 399.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2018
  • Revised:October 12,2018
  • Adopted:October 15,2018
  • Online: May 28,2019
  • Published: